BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 15722078)

  • 1. Local adaptation and enhanced virulence of Nosema granulosis artificially introduced into novel populations of its crustacean host, Gammarus duebeni.
    Hatcher MJ; Hogg JC; Dunn AM
    Int J Parasitol; 2005 Mar; 35(3):265-74. PubMed ID: 15722078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmission and burden and the impact of temperature on two species of vertically transmitted microsporidia.
    Dunn AM; Hogg JC; Hatcher MJ
    Int J Parasitol; 2006 Apr; 36(4):409-14. PubMed ID: 16442539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infection by a vertically-transmitted microsporidian parasite is associated with a female-biased sex ratio and survival advantage in the amphipod Gammarus roeseli.
    Haine ER; Motreuil S; Rigaud T
    Parasitology; 2007 Sep; 134(Pt 10):1363-7. PubMed ID: 17445328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting of host cell lineages by vertically transmitted, feminising microsporidia.
    Weedall RT; Robinson M; Smith JE; Dunn AM
    Int J Parasitol; 2006 Jun; 36(7):749-56. PubMed ID: 16696983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation between populations and local adaptation in acanthocephalan-induced parasite manipulation.
    Franceschi N; Cornet S; Bollache L; Dechaume-Moncharmont FX; Bauer A; Motreuil S; Rigaud T
    Evolution; 2010 Aug; 64(8):2417-30. PubMed ID: 20394670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of a vertically transmitted microsporidian, Nosema granulosis on the fitness of its Gammarus duebeni host under stressful environmental conditions.
    Kelly A; Hatcher MJ; Dunn AM
    Parasitology; 2003 Feb; 126(Pt 2):119-24. PubMed ID: 12636349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virulence is context-dependent in a vertically transmitted aquatic host-microparasite system.
    Ryan JA; Kohler SL
    Int J Parasitol; 2010 Dec; 40(14):1665-73. PubMed ID: 20699101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two species of feminizing microsporidian parasite coexist in populations of Gammarus duebeni.
    Ironside JE; Smith JE; Hatcher MJ; Sharpe RG; Rollinson D; Dunn AM
    J Evol Biol; 2003 May; 16(3):467-73. PubMed ID: 14635846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of virulence for the parasite Nosema whitei in its host Tribolium castaneum.
    Blaser M; Schmid-Hempel P
    J Invertebr Pathol; 2005 Jul; 89(3):251-7. PubMed ID: 15963529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of host resistance and trade-offs between virulence and transmission potential in an obligately killing parasite.
    Bérénos C; Schmid-Hempel P; Wegner KM
    J Evol Biol; 2009 Oct; 22(10):2049-56. PubMed ID: 19732263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of parasite-induced sex reversal in Gammarus duebeni.
    Rodgers-Gray TP; Smith JE; Ashcroft AE; Isaac RE; Dunn AM
    Int J Parasitol; 2004 May; 34(6):747-53. PubMed ID: 15111096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexistence of three microsporidia parasites in populations of the freshwater amphipod Gammarus roeseli: evidence for vertical transmission and positive effect on reproduction.
    Haine ER; Brondani E; Hume KD; Perrot-Minnot MJ; Gaillard M; Rigaud T
    Int J Parasitol; 2004 Sep; 34(10):1137-46. PubMed ID: 15380685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A synthesis of experimental work on parasite local adaptation.
    Greischar MA; Koskella B
    Ecol Lett; 2007 May; 10(5):418-34. PubMed ID: 17498141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting local adaptation in a natural plant-pathogen metapopulation: a laboratory vs. field transplant approach.
    Laine AL
    J Evol Biol; 2007 Sep; 20(5):1665-73. PubMed ID: 17714283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. (Cryptic) sex in the microsporidian Nosema granulosis--evidence from parasite rDNA and host mitochondrial DNA.
    Krebes L; Zeidler L; Frankowski J; Bastrop R
    Infect Genet Evol; 2014 Jan; 21():259-68. PubMed ID: 24269340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host sex and local adaptation by parasites in a snail-trematode interaction.
    Lively CM; Dybdahl MF; Jokela J; Osnas EE; Delph LF
    Am Nat; 2004 Nov; 164 Suppl 5():S6-18. PubMed ID: 15540142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsporidian infections in the species complex Gammarus roeselii (Amphipoda) over its geographical range: evidence for both host-parasite co-diversification and recent host shifts.
    Quiles A; Bacela-Spychalska K; Teixeira M; Lambin N; Grabowski M; Rigaud T; Wattier RA
    Parasit Vectors; 2019 Jun; 12(1):327. PubMed ID: 31253176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of migration on local adaptation in a coevolving host-parasite system.
    Morgan AD; Gandon S; Buckling A
    Nature; 2005 Sep; 437(7056):253-6. PubMed ID: 16148933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative number of generations of hosts and parasites does not influence parasite local adaptation in coevolving populations of bacteria and phages.
    Morgan AD; Buckling A
    J Evol Biol; 2006 Nov; 19(6):1956-63. PubMed ID: 17040393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The expression of virulence during double infections by different parasites with conflicting host exploitation and transmission strategies.
    Ben-Ami F; Rigaud T; Ebert D
    J Evol Biol; 2011 Jun; 24(6):1307-16. PubMed ID: 21481055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.