These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 15722078)
1. Local adaptation and enhanced virulence of Nosema granulosis artificially introduced into novel populations of its crustacean host, Gammarus duebeni. Hatcher MJ; Hogg JC; Dunn AM Int J Parasitol; 2005 Mar; 35(3):265-74. PubMed ID: 15722078 [TBL] [Abstract][Full Text] [Related]
2. Transmission and burden and the impact of temperature on two species of vertically transmitted microsporidia. Dunn AM; Hogg JC; Hatcher MJ Int J Parasitol; 2006 Apr; 36(4):409-14. PubMed ID: 16442539 [TBL] [Abstract][Full Text] [Related]
3. Infection by a vertically-transmitted microsporidian parasite is associated with a female-biased sex ratio and survival advantage in the amphipod Gammarus roeseli. Haine ER; Motreuil S; Rigaud T Parasitology; 2007 Sep; 134(Pt 10):1363-7. PubMed ID: 17445328 [TBL] [Abstract][Full Text] [Related]
4. Targeting of host cell lineages by vertically transmitted, feminising microsporidia. Weedall RT; Robinson M; Smith JE; Dunn AM Int J Parasitol; 2006 Jun; 36(7):749-56. PubMed ID: 16696983 [TBL] [Abstract][Full Text] [Related]
5. Variation between populations and local adaptation in acanthocephalan-induced parasite manipulation. Franceschi N; Cornet S; Bollache L; Dechaume-Moncharmont FX; Bauer A; Motreuil S; Rigaud T Evolution; 2010 Aug; 64(8):2417-30. PubMed ID: 20394670 [TBL] [Abstract][Full Text] [Related]
6. The impact of a vertically transmitted microsporidian, Nosema granulosis on the fitness of its Gammarus duebeni host under stressful environmental conditions. Kelly A; Hatcher MJ; Dunn AM Parasitology; 2003 Feb; 126(Pt 2):119-24. PubMed ID: 12636349 [TBL] [Abstract][Full Text] [Related]
7. Virulence is context-dependent in a vertically transmitted aquatic host-microparasite system. Ryan JA; Kohler SL Int J Parasitol; 2010 Dec; 40(14):1665-73. PubMed ID: 20699101 [TBL] [Abstract][Full Text] [Related]
8. Two species of feminizing microsporidian parasite coexist in populations of Gammarus duebeni. Ironside JE; Smith JE; Hatcher MJ; Sharpe RG; Rollinson D; Dunn AM J Evol Biol; 2003 May; 16(3):467-73. PubMed ID: 14635846 [TBL] [Abstract][Full Text] [Related]
9. Determinants of virulence for the parasite Nosema whitei in its host Tribolium castaneum. Blaser M; Schmid-Hempel P J Invertebr Pathol; 2005 Jul; 89(3):251-7. PubMed ID: 15963529 [TBL] [Abstract][Full Text] [Related]
10. Evolution of host resistance and trade-offs between virulence and transmission potential in an obligately killing parasite. Bérénos C; Schmid-Hempel P; Wegner KM J Evol Biol; 2009 Oct; 22(10):2049-56. PubMed ID: 19732263 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of parasite-induced sex reversal in Gammarus duebeni. Rodgers-Gray TP; Smith JE; Ashcroft AE; Isaac RE; Dunn AM Int J Parasitol; 2004 May; 34(6):747-53. PubMed ID: 15111096 [TBL] [Abstract][Full Text] [Related]
12. Coexistence of three microsporidia parasites in populations of the freshwater amphipod Gammarus roeseli: evidence for vertical transmission and positive effect on reproduction. Haine ER; Brondani E; Hume KD; Perrot-Minnot MJ; Gaillard M; Rigaud T Int J Parasitol; 2004 Sep; 34(10):1137-46. PubMed ID: 15380685 [TBL] [Abstract][Full Text] [Related]
13. A synthesis of experimental work on parasite local adaptation. Greischar MA; Koskella B Ecol Lett; 2007 May; 10(5):418-34. PubMed ID: 17498141 [TBL] [Abstract][Full Text] [Related]
14. Detecting local adaptation in a natural plant-pathogen metapopulation: a laboratory vs. field transplant approach. Laine AL J Evol Biol; 2007 Sep; 20(5):1665-73. PubMed ID: 17714283 [TBL] [Abstract][Full Text] [Related]
15. (Cryptic) sex in the microsporidian Nosema granulosis--evidence from parasite rDNA and host mitochondrial DNA. Krebes L; Zeidler L; Frankowski J; Bastrop R Infect Genet Evol; 2014 Jan; 21():259-68. PubMed ID: 24269340 [TBL] [Abstract][Full Text] [Related]
16. Host sex and local adaptation by parasites in a snail-trematode interaction. Lively CM; Dybdahl MF; Jokela J; Osnas EE; Delph LF Am Nat; 2004 Nov; 164 Suppl 5():S6-18. PubMed ID: 15540142 [TBL] [Abstract][Full Text] [Related]
17. Microsporidian infections in the species complex Gammarus roeselii (Amphipoda) over its geographical range: evidence for both host-parasite co-diversification and recent host shifts. Quiles A; Bacela-Spychalska K; Teixeira M; Lambin N; Grabowski M; Rigaud T; Wattier RA Parasit Vectors; 2019 Jun; 12(1):327. PubMed ID: 31253176 [TBL] [Abstract][Full Text] [Related]
18. The effect of migration on local adaptation in a coevolving host-parasite system. Morgan AD; Gandon S; Buckling A Nature; 2005 Sep; 437(7056):253-6. PubMed ID: 16148933 [TBL] [Abstract][Full Text] [Related]
19. Relative number of generations of hosts and parasites does not influence parasite local adaptation in coevolving populations of bacteria and phages. Morgan AD; Buckling A J Evol Biol; 2006 Nov; 19(6):1956-63. PubMed ID: 17040393 [TBL] [Abstract][Full Text] [Related]
20. The expression of virulence during double infections by different parasites with conflicting host exploitation and transmission strategies. Ben-Ami F; Rigaud T; Ebert D J Evol Biol; 2011 Jun; 24(6):1307-16. PubMed ID: 21481055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]