These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 15722208)

  • 1. Learning-related fMRI activation associated with a rotational visuo-motor transformation.
    Graydon FX; Friston KJ; Thomas CG; Brooks VB; Menon RS
    Brain Res Cogn Brain Res; 2005 Mar; 22(3):373-83. PubMed ID: 15722208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in brain activation during the acquisition of a new bimanual coodination task.
    Debaere F; Wenderoth N; Sunaert S; Van Hecke P; Swinnen SP
    Neuropsychologia; 2004; 42(7):855-67. PubMed ID: 14998701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
    Bapi RS; Miyapuram KP; Graydon FX; Doya K
    Neuroimage; 2006 Aug; 32(2):714-27. PubMed ID: 16798015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroanatomical correlates of motor acquisition and motor transfer.
    Seidler RD; Noll DC
    J Neurophysiol; 2008 Apr; 99(4):1836-45. PubMed ID: 18272874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The multifaceted nature of the relationship between performance and brain activity in motor sequence learning.
    Orban P; Peigneux P; Lungu O; Albouy G; Breton E; Laberenne F; Benali H; Maquet P; Doyon J
    Neuroimage; 2010 Jan; 49(1):694-702. PubMed ID: 19732838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The functional role of dorso-lateral premotor cortex during mental rotation: an event-related fMRI study separating cognitive processing steps using a novel task paradigm.
    Lamm C; Windischberger C; Moser E; Bauer H
    Neuroimage; 2007 Jul; 36(4):1374-86. PubMed ID: 17532647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor learning in man: a review of functional and clinical studies.
    Halsband U; Lange RK
    J Physiol Paris; 2006 Jun; 99(4-6):414-24. PubMed ID: 16730432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acquisition of a new bimanual coordination pattern modulates the cerebral activations elicited by an intrinsic pattern: an fMRI study.
    Rémy F; Wenderoth N; Lipkens K; Swinnen SP
    Cortex; 2008 May; 44(5):482-93. PubMed ID: 18387582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural basis for the processes that underlie visually guided and internally guided force control in humans.
    Vaillancourt DE; Thulborn KR; Corcos DM
    J Neurophysiol; 2003 Nov; 90(5):3330-40. PubMed ID: 12840082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visuo-motor integration in humans: cortical patterns of response lateralisation and functional connectivity.
    Wolynski B; Schott BH; Kanowski M; Hoffmann MB
    Neuropsychologia; 2009 Apr; 47(5):1313-22. PubMed ID: 19428395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role of the basal ganglia and midbrain nuclei for initiation of motor sequences.
    Boecker H; Jankowski J; Ditter P; Scheef L
    Neuroimage; 2008 Feb; 39(3):1356-69. PubMed ID: 18024158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visuo-motor integration and control in the human posterior parietal cortex: evidence from TMS and fMRI.
    Iacoboni M
    Neuropsychologia; 2006; 44(13):2691-9. PubMed ID: 16759673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans.
    Antal A; Nitsche MA; Kincses TZ; Kruse W; Hoffmann KP; Paulus W
    Eur J Neurosci; 2004 May; 19(10):2888-92. PubMed ID: 15147322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of "analytical-specific visual perception" and degree of task difficulty as investigated by the Mangina-Test: a functional magnetic resonance imaging (fMRI) study in young healthy adults.
    Mangina CA; Beuzeron-Mangina H; Ricciardi E; Pietrini P; Chiarenza GA; Casarotto S
    Int J Psychophysiol; 2009 Aug; 73(2):150-6. PubMed ID: 19414052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebellum activation associated with performance change but not motor learning.
    Seidler RD; Purushotham A; Kim SG; Uğurbil K; Willingham D; Ashe J
    Science; 2002 Jun; 296(5575):2043-6. PubMed ID: 12065841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response selection versus feedback analysis in conditional visuo-motor learning.
    Amiez C; Hadj-Bouziane F; Petrides M
    Neuroimage; 2012 Feb; 59(4):3723-35. PubMed ID: 22040737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel vibrotactile discrimination task for investigating the neural correlates of short-term learning with fMRI.
    Tang K; Staines WR; Black SE; McIlroy WE
    J Neurosci Methods; 2009 Mar; 178(1):65-74. PubMed ID: 19109997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time course of changes in brain activity and functional connectivity associated with long-term adaptation to a rotational transformation.
    Della-Maggiore V; McIntosh AR
    J Neurophysiol; 2005 Apr; 93(4):2254-62. PubMed ID: 15574799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The neural substrate of the ideomotor principle: an event-related fMRI analysis.
    Melcher T; Weidema M; Eenshuistra RM; Hommel B; Gruber O
    Neuroimage; 2008 Feb; 39(3):1274-88. PubMed ID: 17988896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.