BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15722416)

  • 1. Chlamydia pneumoniae infection promotes a proliferative phenotype in the vasculature through Egr-1 activation in vitro and in vivo.
    Rupp J; Hellwig-Burgel T; Wobbe V; Seitzer U; Brandt E; Maass M
    Proc Natl Acad Sci U S A; 2005 Mar; 102(9):3447-52. PubMed ID: 15722416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlamydia pneumoniae induces tissue factor expression in mouse macrophages via activation of Egr-1 and the MEK-ERK1/2 pathway.
    Bea F; Puolakkainen MH; McMillen T; Hudson FN; Mackman N; Kuo CC; Campbell LA; Rosenfeld ME
    Circ Res; 2003 Mar; 92(4):394-401. PubMed ID: 12600889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proliferative stimulation of the vascular Endothelin-1 axis in vitro and ex vivo by infection with Chlamydia pneumoniae.
    Kern JM; Maass V; Rupp J; Maass M
    Thromb Haemost; 2009 Oct; 102(4):743-53. PubMed ID: 19806261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Could past Chlamydial vascular infection promote the dissemination of Chlamydia pneumoniae to the brain?
    Di Pietro M; Filardo S; Cazzavillan S; Segala C; Bevilacqua P; Bonoldi E; D'Amore ES; Rassu M; Sessa R
    J Biol Regul Homeost Agents; 2013; 27(1):155-64. PubMed ID: 23489695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatocyte growth factor/scatter factor differentially regulates expression of proangiogenic factors through Egr-1 in head and neck squamous cell carcinoma.
    Worden B; Yang XP; Lee TL; Bagain L; Yeh NT; Cohen JG; Van Waes C; Chen Z
    Cancer Res; 2005 Aug; 65(16):7071-80. PubMed ID: 16103054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydia pneumoniae adversely modulates vascular cell properties by direct interaction with signalling cascades.
    Kern JM; Maass V; Maass M
    Thromb Haemost; 2009 Dec; 102(6):1064-70. PubMed ID: 19967136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidized LDL promotes the mitogenic actions of Chlamydia pneumoniae in vascular smooth muscle cells.
    Chahine MN; Deniset J; Dibrov E; Hirono S; Blackwood DP; Austria JA; Pierce GN
    Cardiovasc Res; 2011 Dec; 92(3):476-83. PubMed ID: 22072707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlamydia pneumoniae activates nuclear factor kappaB and activator protein 1 in human vascular smooth muscle and induces cellular proliferation.
    Miller SA; Selzman CH; Shames BD; Barton HA; Johnson SM; Harken AH
    J Surg Res; 2000 May; 90(1):76-81. PubMed ID: 10781378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toll-like receptor 2 mediates persistent chemokine release by Chlamydia pneumoniae-infected vascular smooth muscle cells.
    Yang X; Coriolan D; Schultz K; Golenbock DT; Beasley D
    Arterioscler Thromb Vasc Biol; 2005 Nov; 25(11):2308-14. PubMed ID: 16179594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antisense Egr-1 RNA driven by the CMV promoter is an inhibitor of vascular smooth muscle cell proliferation and regrowth after injury.
    Fahmy RG; Khachigian LM
    J Cell Biochem; 2002; 84(3):575-82. PubMed ID: 11813262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial Chlamydia pneumoniae infection promotes oxidation of LDL.
    Dittrich R; Dragonas C; Mueller A; Maltaris T; Rupp J; Beckmann MW; Maass M
    Biochem Biophys Res Commun; 2004 Jun; 319(2):501-5. PubMed ID: 15178434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Egr-1 mediates transcriptional activation of IGF-II gene in response to hypoxia.
    Bae SK; Bae MH; Ahn MY; Son MJ; Lee YM; Bae MK; Lee OH; Park BC; Kim KW
    Cancer Res; 1999 Dec; 59(23):5989-94. PubMed ID: 10606246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Egr-1 is activated by 17beta-estradiol in MCF-7 cells by mitogen-activated protein kinase-dependent phosphorylation of ELK-1.
    Chen CC; Lee WR; Safe S
    J Cell Biochem; 2004 Nov; 93(5):1063-74. PubMed ID: 15449318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperoxia induces Egr-1 expression through activation of extracellular signal-regulated kinase 1/2 pathway.
    Jones N; Agani FH
    J Cell Physiol; 2003 Aug; 196(2):326-33. PubMed ID: 12811826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased expression of early growth response-1 and its role in uterine leiomyoma growth.
    Shozu M; Murakami K; Segawa T; Kasai T; Ishikawa H; Shinohara K; Okada M; Inoue M
    Cancer Res; 2004 Jul; 64(13):4677-84. PubMed ID: 15231681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydophila (Chlamydia) pneumoniae infection promotes vascular smooth muscle cell adhesion and migration through IQ domain GTPase-activating protein 1.
    Zhang L; Li X; Zhang L; Wang B; Zhang T; Ye J
    Microb Pathog; 2012; 53(5-6):207-13. PubMed ID: 22835851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury.
    Santiago FS; Lowe HC; Kavurma MM; Chesterman CN; Baker A; Atkins DG; Khachigian LM
    Nat Med; 1999 Nov; 5(11):1264-9. PubMed ID: 10545992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helicobacter pylori activates the early growth response 1 protein in gastric epithelial cells.
    Abdel-Latif MM; Windle HJ; Fitzgerald KA; Ang YS; Eidhin DN; Li-Weber M; Sabra K; Kelleher D
    Infect Immun; 2004 Jun; 72(6):3549-60. PubMed ID: 15155664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in cell activation by Chlamydophila pneumoniae and Chlamydia trachomatis infection in human endothelial cells.
    Krüll M; Kramp J; Petrov T; Klucken AC; Hocke AC; Walter C; Schmeck B; Seybold J; Maass M; Ludwig S; Kuipers JG; Suttorp N; Hippenstiel S
    Infect Immun; 2004 Nov; 72(11):6615-21. PubMed ID: 15501794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curcumin, the active constituent of turmeric, inhibits amyloid peptide-induced cytochemokine gene expression and CCR5-mediated chemotaxis of THP-1 monocytes by modulating early growth response-1 transcription factor.
    Giri RK; Rajagopal V; Kalra VK
    J Neurochem; 2004 Dec; 91(5):1199-210. PubMed ID: 15569263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.