These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 15722442)
1. Contributions of hydrophobic domain interface interactions to the folding and stability of human gammaD-crystallin. Flaugh SL; Kosinski-Collins MS; King J Protein Sci; 2005 Mar; 14(3):569-81. PubMed ID: 15722442 [TBL] [Abstract][Full Text] [Related]
2. Interdomain side-chain interactions in human gammaD crystallin influencing folding and stability. Flaugh SL; Kosinski-Collins MS; King J Protein Sci; 2005 Aug; 14(8):2030-43. PubMed ID: 16046626 [TBL] [Abstract][Full Text] [Related]
3. Contributions of aromatic pairs to the folding and stability of long-lived human γD-crystallin. Kong F; King J Protein Sci; 2011 Mar; 20(3):513-28. PubMed ID: 21432932 [TBL] [Abstract][Full Text] [Related]
4. Hydrophobic core mutations associated with cataract development in mice destabilize human gammaD-crystallin. Moreau KL; King J J Biol Chem; 2009 Nov; 284(48):33285-95. PubMed ID: 19758984 [TBL] [Abstract][Full Text] [Related]
5. Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins. Kosinski-Collins MS; Flaugh SL; King J Protein Sci; 2004 Aug; 13(8):2223-35. PubMed ID: 15273315 [TBL] [Abstract][Full Text] [Related]
6. In vitro unfolding, refolding, and polymerization of human gammaD crystallin, a protein involved in cataract formation. Kosinski-Collins MS; King J Protein Sci; 2003 Mar; 12(3):480-90. PubMed ID: 12592018 [TBL] [Abstract][Full Text] [Related]
7. Glutamine deamidation destabilizes human gammaD-crystallin and lowers the kinetic barrier to unfolding. Flaugh SL; Mills IA; King J J Biol Chem; 2006 Oct; 281(41):30782-93. PubMed ID: 16891314 [TBL] [Abstract][Full Text] [Related]
8. Dissecting the contributions of β-hairpin tyrosine pairs to the folding and stability of long-lived human γD-crystallins. Yang Z; Xia Z; Huynh T; King JA; Zhou R Nanoscale; 2014; 6(3):1797-807. PubMed ID: 24352614 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of unfolding and aggregation of lens protein human gamma D crystallin by sodium citrate. Goulet DR; Knee KM; King JA Exp Eye Res; 2011 Oct; 93(4):371-81. PubMed ID: 21600897 [TBL] [Abstract][Full Text] [Related]
10. Folding and stability of the isolated Greek key domains of the long-lived human lens proteins gammaD-crystallin and gammaS-crystallin. Mills IA; Flaugh SL; Kosinski-Collins MS; King JA Protein Sci; 2007 Nov; 16(11):2427-44. PubMed ID: 17905830 [TBL] [Abstract][Full Text] [Related]
11. Group II archaeal chaperonin recognition of partially folded human γD-crystallin mutants. Sergeeva OA; Yang J; King JA; Knee KM Protein Sci; 2014 Jun; 23(6):693-702. PubMed ID: 24615724 [TBL] [Abstract][Full Text] [Related]
12. beta-Strand interactions at the domain interface critical for the stability of human lens gammaD-crystallin. Das P; King JA; Zhou R Protein Sci; 2010 Jan; 19(1):131-40. PubMed ID: 19937657 [TBL] [Abstract][Full Text] [Related]
13. The G18V CRYGS mutation associated with human cataracts increases gammaS-crystallin sensitivity to thermal and chemical stress. Ma Z; Piszczek G; Wingfield PT; Sergeev YV; Hejtmancik JF Biochemistry; 2009 Aug; 48(30):7334-41. PubMed ID: 19558189 [TBL] [Abstract][Full Text] [Related]
14. Truncation of motifs III and IV in human lens betaA3-crystallin destabilizes the structure. Gupta R; Srivastava K; Srivastava OP Biochemistry; 2006 Aug; 45(33):9964-78. PubMed ID: 16906755 [TBL] [Abstract][Full Text] [Related]
15. Mutational analysis of hydrophobic domain interactions in gamma B-crystallin from bovine eye lens. Palme S; Slingsby C; Jaenicke R Protein Sci; 1997 Jul; 6(7):1529-36. PubMed ID: 9232654 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of the highly efficient quenching of tryptophan fluorescence in human gammaD-crystallin. Chen J; Flaugh SL; Callis PR; King J Biochemistry; 2006 Sep; 45(38):11552-63. PubMed ID: 16981715 [TBL] [Abstract][Full Text] [Related]
17. Deamidation in human lens betaB2-crystallin destabilizes the dimer. Lampi KJ; Amyx KK; Ahmann P; Steel EA Biochemistry; 2006 Mar; 45(10):3146-53. PubMed ID: 16519509 [TBL] [Abstract][Full Text] [Related]
18. Double Domain Swapping in Human γC and γD Crystallin Drives Early Stages of Aggregation. Mondal B; Nagesh J; Reddy G J Phys Chem B; 2021 Feb; 125(7):1705-1715. PubMed ID: 33566611 [TBL] [Abstract][Full Text] [Related]
19. Gamma S-crystallin of bovine and human eye lens: solution structure, stability and folding of the intact two-domain protein and its separate domains. Wenk M; Herbst R; Hoeger D; Kretschmar M; Lubsen NH; Jaenicke R Biophys Chem; 2000 Aug; 86(2-3):95-108. PubMed ID: 11026675 [TBL] [Abstract][Full Text] [Related]
20. Engineered tyrosine residues serve as the local probes to detect a kinetic intermediate in the folding of ribose-binding protein. Kim D; Kim C; Park C J Mol Biol; 1994 Jul; 240(4):385-95. PubMed ID: 8035461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]