BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 15723059)

  • 1. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification.
    Pegan S; Arrabit C; Zhou W; Kwiatkowski W; Collins A; Slesinger PA; Choe S
    Nat Neurosci; 2005 Mar; 8(3):279-87. PubMed ID: 15723059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2006 Apr; 127(4):401-19. PubMed ID: 16533896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural diversity in the cytoplasmic region of G protein-gated inward rectifier K+ channels.
    Inanobe A; Matsuura T; Nakagawa A; Kurachi Y
    Channels (Austin); 2007; 1(1):39-45. PubMed ID: 19151589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inwardly rectifying potassium channels: their structure, function, and physiological roles.
    Hibino H; Inanobe A; Furutani K; Murakami S; Findlay I; Kurachi Y
    Physiol Rev; 2010 Jan; 90(1):291-366. PubMed ID: 20086079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A difference in inward rectification and polyamine block and permeation between the Kir2.1 and Kir3.1/Kir3.4 K+ channels.
    Makary SM; Claydon TW; Enkvetchakul D; Nichols CG; Boyett MR
    J Physiol; 2005 Nov; 568(Pt 3):749-66. PubMed ID: 16109731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of extracellular cations on the inward rectifying K+ channels Kir2.1 and Kir3.1/Kir3.4.
    Owen JM; Quinn CC; Leach R; Findlay JB; Boyett MR
    Exp Physiol; 1999 May; 84(3):471-88. PubMed ID: 10362846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-affinity spermine block mediating outward currents through Kir2.1 and Kir2.2 inward rectifier potassium channels.
    Ishihara K; Yan DH
    J Physiol; 2007 Sep; 583(Pt 3):891-908. PubMed ID: 17640933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Andersen's syndrome mutation effects on the structure and assembly of the cytoplasmic domains of Kir2.1.
    Pegan S; Arrabit C; Slesinger PA; Choe S
    Biochemistry; 2006 Jul; 45(28):8599-606. PubMed ID: 16834334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of PIP2 activation gate in inward rectifier K+ channels.
    Xiao J; Zhen XG; Yang J
    Nat Neurosci; 2003 Aug; 6(8):811-8. PubMed ID: 12858177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of domains of the cardiac inward rectifying K+ channel, CIR, involved in the heteromultimer formation and in the G-protein gating.
    Kubo Y; Iizuka M
    Biochem Biophys Res Commun; 1996 Oct; 227(1):240-7. PubMed ID: 8858132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen sulfide inhibits Kir2 and Kir3 channels by decreasing sensitivity to the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP
    Ha J; Xu Y; Kawano T; Hendon T; Baki L; Garai S; Papapetropoulos A; Thakur GA; Plant LD; Logothetis DE
    J Biol Chem; 2018 Mar; 293(10):3546-3561. PubMed ID: 29317494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational dynamics of the ligand-binding domain of inward rectifier K channels as revealed by molecular dynamics simulations: toward an understanding of Kir channel gating.
    Haider S; Grottesi A; Hall BA; Ashcroft FM; Sansom MS
    Biophys J; 2005 May; 88(5):3310-20. PubMed ID: 15749783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of inward rectification in Kir channels.
    John SA; Xie LH; Weiss JN
    J Gen Physiol; 2004 May; 123(5):623-5. PubMed ID: 15078914
    [No Abstract]   [Full Text] [Related]  

  • 14. Two Kir2.1 channel populations with different sensitivities to Mg(2+) and polyamine block: a model for the cardiac strong inward rectifier K(+) channel.
    Yan DH; Ishihara K
    J Physiol; 2005 Mar; 563(Pt 3):725-44. PubMed ID: 15618275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatics in the cytoplasmic pore produce intrinsic inward rectification in kir2.1 channels.
    Yeh SH; Chang HK; Shieh RC
    J Gen Physiol; 2005 Dec; 126(6):551-62. PubMed ID: 16316974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism underlying bupivacaine inhibition of G protein-gated inwardly rectifying K+ channels.
    Zhou W; Arrabit C; Choe S; Slesinger PA
    Proc Natl Acad Sci U S A; 2001 May; 98(11):6482-7. PubMed ID: 11353868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arachidonic acid activates Kir2.3 channels by enhancing channel-phosphatidyl-inositol 4,5-bisphosphate interactions.
    Wang C; Mirshahi UL; Liu B; Jia Z; Mirshahi T; Zhang H
    Mol Pharmacol; 2008 Apr; 73(4):1185-94. PubMed ID: 18202303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions.
    Zhang H; He C; Yan X; Mirshahi T; Logothetis DE
    Nat Cell Biol; 1999 Jul; 1(3):183-8. PubMed ID: 10559906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pertussis-toxin-sensitive Galpha subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex.
    Clancy SM; Fowler CE; Finley M; Suen KF; Arrabit C; Berton F; Kosaza T; Casey PJ; Slesinger PA
    Mol Cell Neurosci; 2005 Feb; 28(2):375-89. PubMed ID: 15691717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion-blocking sites of the Kir2.1 channel revealed by multiscale modeling.
    Tai K; Stansfeld PJ; Sansom MS
    Biochemistry; 2009 Sep; 48(36):8758-63. PubMed ID: 19653656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.