These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 15723076)
1. Structure and activity of an aminoacyl-tRNA synthetase that charges tRNA with nitro-tryptophan. Buddha MR; Crane BR Nat Struct Mol Biol; 2005 Mar; 12(3):274-5. PubMed ID: 15723076 [TBL] [Abstract][Full Text] [Related]
2. Structures of tryptophanyl-tRNA synthetase II from Deinococcus radiodurans bound to ATP and tryptophan. Insight into subunit cooperativity and domain motions linked to catalysis. Buddha MR; Crane BR J Biol Chem; 2005 Sep; 280(36):31965-73. PubMed ID: 15998643 [TBL] [Abstract][Full Text] [Related]
3. An unusual tryptophanyl tRNA synthetase interacts with nitric oxide synthase in Deinococcus radiodurans. Buddha MR; Keery KM; Crane BR Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15881-6. PubMed ID: 15520379 [TBL] [Abstract][Full Text] [Related]
4. Ligand dependent intra and inter subunit communication in human tryptophanyl tRNA synthetase as deduced from the dynamics of structure networks. Hansia P; Ghosh A; Vishveshwara S Mol Biosyst; 2009 Dec; 5(12):1860-72. PubMed ID: 19763332 [TBL] [Abstract][Full Text] [Related]
5. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding. Sever S; Rogers K; Rogers MJ; Carter C; Söll D Biochemistry; 1996 Jan; 35(1):32-40. PubMed ID: 8555191 [TBL] [Abstract][Full Text] [Related]
6. Substrate selection by aminoacyl-tRNA synthetases. Ibba M; Thomann HU; Hong KW; Sherman JM; Weygand-Durasevic I; Sever S; Stange-Thomann N; Praetorius M; Söll D Nucleic Acids Symp Ser; 1995; (33):40-2. PubMed ID: 8643392 [TBL] [Abstract][Full Text] [Related]
7. Regioselective nitration of tryptophan by a complex between bacterial nitric-oxide synthase and tryptophanyl-tRNA synthetase. Buddha MR; Tao T; Parry RJ; Crane BR J Biol Chem; 2004 Nov; 279(48):49567-70. PubMed ID: 15466862 [TBL] [Abstract][Full Text] [Related]
8. Docking of tryptophanyl [corrected tryptophan] analogs to trytophanyl-tRNA synthetase: implications for non-canonical amino acid incorporations. Azim MK; Budisa N Biol Chem; 2008 Sep; 389(9):1173-82. PubMed ID: 18713004 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence based structural analysis of tryptophan analogue-AMP formation in single tryptophan mutants of Bacillus stearothermophilus tryptophanyl-tRNA synthetase. Acchione M; Guillemette JG; Twine SM; Hogue CW; Rajendran B; Szabo AG Biochemistry; 2003 Dec; 42(50):14994-5002. PubMed ID: 14674776 [TBL] [Abstract][Full Text] [Related]
10. Two essential regions for tRNA recognition in Bacillus subtilis tryptophanyl-tRNA synthetase. Jia J; Xu F; Chen X; Chen L; Jin Y; Wang DT Biochem J; 2002 Aug; 365(Pt 3):749-56. PubMed ID: 11966471 [TBL] [Abstract][Full Text] [Related]
11. Transfer RNA identity contributes to transition state stabilization during aminoacyl-tRNA synthesis. Ibba M; Sever S; Praetorius-Ibba M; Söll D Nucleic Acids Res; 1999 Sep; 27(18):3631-7. PubMed ID: 10471730 [TBL] [Abstract][Full Text] [Related]
12. Quantitative analysis of crystal growth. Tryptophanyl-tRNA synthetase crystal polymorphism and its relationship to catalysis. Carter CW; Doublié S; Coleman DE J Mol Biol; 1994 May; 238(3):346-65. PubMed ID: 8176729 [TBL] [Abstract][Full Text] [Related]
13. Species-specific differences in the operational RNA code for aminoacylation of tRNA(Trp). Xu F; Chen X; Xin L; Chen L; Jin Y; Wang D Nucleic Acids Res; 2001 Oct; 29(20):4125-33. PubMed ID: 11600701 [TBL] [Abstract][Full Text] [Related]
14. Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Zhang Z; Alfonta L; Tian F; Bursulaya B; Uryu S; King DS; Schultz PG Proc Natl Acad Sci U S A; 2004 Jun; 101(24):8882-7. PubMed ID: 15187228 [TBL] [Abstract][Full Text] [Related]
15. Structure of human tryptophanyl-tRNA synthetase in complex with tRNATrp reveals the molecular basis of tRNA recognition and specificity. Shen N; Guo L; Yang B; Jin Y; Ding J Nucleic Acids Res; 2006; 34(11):3246-58. PubMed ID: 16798914 [TBL] [Abstract][Full Text] [Related]
16. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92. Hogue CW; Doublié S; Xue H; Wong JT; Carter CW; Szabo AG J Mol Biol; 1996 Jul; 260(3):446-66. PubMed ID: 8757806 [TBL] [Abstract][Full Text] [Related]
18. Human tryptophanyl-tRNA synthetase is switched to a tRNA-dependent mode for tryptophan activation by mutations at V85 and I311. Guo LT; Chen XL; Zhao BT; Shi Y; Li W; Xue H; Jin YX Nucleic Acids Res; 2007; 35(17):5934-43. PubMed ID: 17726052 [TBL] [Abstract][Full Text] [Related]
19. Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations. Retailleau P; Huang X; Yin Y; Hu M; Weinreb V; Vachette P; Vonrhein C; Bricogne G; Roversi P; Ilyin V; Carter CW J Mol Biol; 2003 Jan; 325(1):39-63. PubMed ID: 12473451 [TBL] [Abstract][Full Text] [Related]
20. Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells. Miyanokoshi M; Yokosawa T; Wakasugi K J Biol Chem; 2018 Jun; 293(22):8428-8438. PubMed ID: 29666190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]