These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15723345)

  • 21. Domain-specific folding kinetics of staphylococcal nuclease observed through single-molecule FRET in a microfluidic mixer.
    Zhi Z; Liu P; Wang P; Huang Y; Zhao XS
    Chemphyschem; 2011 Dec; 12(18):3515-8. PubMed ID: 22095840
    [No Abstract]   [Full Text] [Related]  

  • 22. Incorporation of tryptophan analogues into staphylococcal nuclease: stability toward thermal and guanidine-HCl induced unfolding.
    Wong CY; Eftink MR
    Biochemistry; 1998 Jun; 37(25):8947-53. PubMed ID: 9636036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrostatic effects in a network of polar and ionizable groups in staphylococcal nuclease.
    Baran KL; Chimenti MS; Schlessman JL; Fitch CA; Herbst KJ; Garcia-Moreno BE
    J Mol Biol; 2008 Jun; 379(5):1045-62. PubMed ID: 18499123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. X-ray and thermodynamic studies of staphylococcal nuclease variants I92E and I92K: insights into polarity of the protein interior.
    Nguyen DM; Leila Reynald R; Gittis AG; Lattman EE
    J Mol Biol; 2004 Aug; 341(2):565-74. PubMed ID: 15276844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dimensionality of amino acid space and solvent accessibility prediction with neural networks.
    Araúzo-Bravo MJ; Ahmad S; Sarai A
    Comput Biol Chem; 2006 Apr; 30(2):160-8. PubMed ID: 16545617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PPRODO: prediction of protein domain boundaries using neural networks.
    Sim J; Kim SY; Lee J
    Proteins; 2005 May; 59(3):627-32. PubMed ID: 15789433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein contact prediction using patterns of correlation.
    Hamilton N; Burrage K; Ragan MA; Huber T
    Proteins; 2004 Sep; 56(4):679-84. PubMed ID: 15281121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the subtle conformational state of N138ND2-Q106O hydrogen bonding deletion mutant (Asn138Asp) of staphylococcal nuclease using time of flight mass spectrometry with limited proteolysis.
    Huang S; Zou X; Guo P; Zhong L; Peng J; Jing G
    Arch Biochem Biophys; 2005 Feb; 434(1):86-92. PubMed ID: 15629112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate prediction of enzyme mutant activity based on a multibody statistical potential.
    Masso M; Vaisman II
    Bioinformatics; 2007 Dec; 23(23):3155-61. PubMed ID: 17977887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contact prediction using mutual information and neural nets.
    Shackelford G; Karplus K
    Proteins; 2007; 69 Suppl 8():159-64. PubMed ID: 17932918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amino Acid Sequence Autocorrelation vectors and ensembles of Bayesian-Regularized Genetic Neural Networks for prediction of conformational stability of human lysozyme mutants.
    Caballero J; Fernández L; Abreu JI; Fernández M
    J Chem Inf Model; 2006; 46(3):1255-68. PubMed ID: 16711745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stability for function trade-offs in the enolase superfamily "catalytic module".
    Nagatani RA; Gonzalez A; Shoichet BK; Brinen LS; Babbitt PC
    Biochemistry; 2007 Jun; 46(23):6688-95. PubMed ID: 17503785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variable site-occupancy classification of N-linked glycosylation using artificial neural networks.
    Senger RS; Karim MN
    Biotechnol Prog; 2005; 21(6):1653-62. PubMed ID: 16321048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mobile unnatural amino acid side chains in the core of staphylococcal nuclease.
    Wynn R; Harkins PC; Richards FM; Fox RO
    Protein Sci; 1996 Jun; 5(6):1026-31. PubMed ID: 8762134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state.
    Green SM; Meeker AK; Shortle D
    Biochemistry; 1992 Jun; 31(25):5717-28. PubMed ID: 1610820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network.
    Tang YR; Chen YZ; Canchaya CA; Zhang Z
    Protein Eng Des Sel; 2007 Aug; 20(8):405-12. PubMed ID: 17652129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of protein secondary structure content using amino acid composition and evolutionary information.
    Lee S; Lee BC; Kim D
    Proteins; 2006 Mar; 62(4):1107-14. PubMed ID: 16345074
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of protein secondary structure by an enhanced neural network.
    Vieth M; Koliński A
    Acta Biochim Pol; 1991; 38(3):335-51. PubMed ID: 1799113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.