These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15723453)

  • 1. Nanoscale patterning of flat carbon surfaces by scanning probe lithography and electrochemistry.
    Brooksby PA; Downard AJ
    Langmuir; 2005 Mar; 21(5):1672-5. PubMed ID: 15723453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscale patterning of organic films on carbon surfaces using electrochemistry and soft lithography.
    Downard AJ; Garrett DJ; Tan ES
    Langmuir; 2006 Dec; 22(25):10739-46. PubMed ID: 17129054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of indium tin oxide via electrochemical reduction of aryldiazonium cations.
    Maldonado S; Smith TJ; Williams RD; Morin S; Barton E; Stevenson KJ
    Langmuir; 2006 Mar; 22(6):2884-91. PubMed ID: 16519499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic stamp lithography for sub-100 nm patterning of organic monolayers.
    Mizuno H; Buriak JM
    J Am Chem Soc; 2008 Dec; 130(52):17656-7. PubMed ID: 19063631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining aryltriazenes and electrogenerated acids to create well-defined aryl-tethered films and patterns on surfaces.
    Kongsfelt M; Vinther J; Malmos K; Ceccato M; Torbensen K; Knudsen CS; Gothelf KV; Pedersen SU; Daasbjerg K
    J Am Chem Soc; 2011 Mar; 133(11):3788-91. PubMed ID: 21355553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-component mixed and patterned films on carbon surfaces through the photografting of arylazides.
    Gross AJ; Yu SS; Downard AJ
    Langmuir; 2010 May; 26(10):7285-92. PubMed ID: 20166705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An electrochemical and XPS study of reduction of nitrophenyl films covalently grafted to planar carbon surfaces.
    Yu SS; Tan ES; Jane RT; Downard AJ
    Langmuir; 2007 Oct; 23(22):11074-82. PubMed ID: 17900158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale patterning of organic monolayers by catalytic stamp lithography: scope and limitations.
    Mizuno H; Buriak JM
    ACS Appl Mater Interfaces; 2009 Dec; 1(12):2711-20. PubMed ID: 20356148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilayer nitroazobenzene films covalently attached to carbon. An AFM and electrochemical study.
    Brooksby PA; Downard AJ
    J Phys Chem B; 2005 May; 109(18):8791-8. PubMed ID: 16852044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanopatterning of transition metal surfaces via electrochemical dimple array formation.
    Singh S; Barden WR; Kruse P
    ACS Nano; 2008 Dec; 2(12):2453-64. PubMed ID: 19206279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using a hydrazone-protected benzenediazonium salt to introduce a near-monolayer of benzaldehyde on glassy carbon surfaces.
    Malmos K; Dong M; Pillai S; Kingshott P; Besenbacher F; Pedersen SU; Daasbjerg K
    J Am Chem Soc; 2009 Apr; 131(13):4928-36. PubMed ID: 19281237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable formation of nanoscale patterns on TiO2 by conductive-AFM nanolithography.
    Garipcan B; Winters J; Atchison JS; Cathell MD; Schiffman JD; Leaffer OD; Nonnenmann SS; Schauer CL; Pişkin E; Nabet B; Spanier JE
    Langmuir; 2008 Aug; 24(16):8944-9. PubMed ID: 18646874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically specific laser-induced patterning of alkanethiol SAMs: characterization by SEM and AFM.
    Iversen L; Younes-Metzler O; Martinez KL; Stamou D
    Langmuir; 2009 Nov; 25(21):12819-24. PubMed ID: 19624108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts.
    Pinson J; Podvorica F
    Chem Soc Rev; 2005 May; 34(5):429-39. PubMed ID: 15852155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterning phase separation in polymer films with dip-pen nanolithography.
    Coffey DC; Ginger DS
    J Am Chem Soc; 2005 Apr; 127(13):4564-5. PubMed ID: 15796508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale patterning of ionic self-assembled multilayers.
    Tulpar A; Wang Z; Jang CH; Jain V; Heflin JR; Ducker WA
    Nanotechnology; 2009 Apr; 20(15):155301. PubMed ID: 19420543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bipolar electrochemical approach to constructive lithography: metal/monolayer patterns via consecutive site-defined oxidation and reduction.
    Zeira A; Berson J; Feldman I; Maoz R; Sagiv J
    Langmuir; 2011 Jul; 27(13):8562-75. PubMed ID: 21661737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous catalysis of a copper-coated atomic force microscopy tip for direct-write click chemistry.
    Paxton WF; Spruell JM; Stoddart JF
    J Am Chem Soc; 2009 May; 131(19):6692-4. PubMed ID: 19388653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of applied potential on arylmethyl films oxidatively grafted to carbon surfaces.
    Brooksby PA; Downard AJ; Yu SS
    Langmuir; 2005 Nov; 21(24):11304-11. PubMed ID: 16285804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-area patterning of coinage-metal thin films using decal transfer lithography.
    Childs WR; Nuzzo RG
    Langmuir; 2005 Jan; 21(1):195-202. PubMed ID: 15620303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.