These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15723467)

  • 1. Recycling nanoparticles stabilized in water-in-CO2 microemulsions for catalytic hydrogenations.
    Ohde M; Ohde H; Wai CM
    Langmuir; 2005 Mar; 21(5):1738-44. PubMed ID: 15723467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Ag and AgI quantum dots in AOT-stabilized water-in-CO2 microemulsions.
    Liu J; Raveendran P; Shervani Z; Ikushima Y; Hakuta Y
    Chemistry; 2005 Mar; 11(6):1854-60. PubMed ID: 15685712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous tuning of cadmium sulfide and zinc sulfide nanoparticle size in a water-in-supercritical carbon dioxide microemulsion.
    Fernandez CA; Wai CM
    Chemistry; 2007; 13(20):5838-44. PubMed ID: 17443835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent-adaptable silver nanoparticles.
    Prasad BL; Arumugam SK; Bala T; Sastry M
    Langmuir; 2005 Feb; 21(3):822-6. PubMed ID: 15667154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning aggregation of microemulsion droplets and silica nanoparticles using solvent mixtures.
    Salabat A; Eastoe J; Mutch KJ; Tabor RF
    J Colloid Interface Sci; 2008 Feb; 318(2):244-51. PubMed ID: 18054035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water/supercritical CO2 microemulsions with mixed surfactant systems.
    Sagisaka M; Koike D; Mashimo Y; Yoda S; Takebayashi Y; Furuya T; Yoshizawa A; Sakai H; Abe M; Otake K
    Langmuir; 2008 Sep; 24(18):10116-22. PubMed ID: 18715020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of microemulsion variables on copper oxide nanoparticle uptake by AOT microemulsions.
    Nassar NN; Husein MM
    J Colloid Interface Sci; 2007 Dec; 316(2):442-50. PubMed ID: 17889890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced stabilization of reverse micelles by compressed CO2.
    Shen D; Han B; Dong Y; Wu W; Chen J; Zhang J
    Chemistry; 2005 Feb; 11(4):1228-34. PubMed ID: 15619728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of nanomagnetic absorbent for partition coefficient measurement.
    Tsang SC; Yu CH; Gao X; Tam KY
    Int J Pharm; 2006 Dec; 327(1-2):139-44. PubMed ID: 16935440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic catalysis in microemulsions: enzyme reuse and product recovery.
    Larsson KM; Adlercreutz P; Mattiasson B; Olsson U
    Biotechnol Bioeng; 1990 Jun; 36(2):135-41. PubMed ID: 18595061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photorecovery of nanoparticles from an organic solvent.
    Salabat A; Eastoe J; Vesperinas A; Tabor RF; Mutch KJ
    Langmuir; 2008 Mar; 24(5):1829-32. PubMed ID: 18198914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Esterification of octanoic acid with 1-octanol catalyzed by lipase in W/O microemulsions and in microemulsion-based organogels].
    Zhou GW; Huang XR; Li YZ; Li GZ; Hu W
    Sheng Wu Gong Cheng Xue Bao; 2001 Mar; 17(2):224-7. PubMed ID: 11411238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant-mixing effects on the interfacial tension and the microemulsion formation in water/supercritical CO2 system.
    Sagisaka M; Fujii T; Koike D; Yoda S; Takebayashi Y; Furuya T; Yoshizawa A; Sakai H; Abe M; Otake K
    Langmuir; 2007 Feb; 23(5):2369-75. PubMed ID: 17309200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloride ion effects on synthesis and directed assembly of copper nanoparticles in liquid and compressed alkane microemulsions.
    Kitchens CL; McLeod MC; Roberts CB
    Langmuir; 2005 May; 21(11):5166-73. PubMed ID: 15896066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General approach for the synthesis of organic-inorganic hybrid nanoparticles mediated by supercritical CO2.
    Moisan S; Martinez V; Weisbecker P; Cansell F; Mecking S; Aymonier C
    J Am Chem Soc; 2007 Aug; 129(34):10602-6. PubMed ID: 17685528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of nanoparticles produced in phosphatidylcholine-based template phases.
    Koetz J; Reichelt S; Kosmella S; Tiersch B
    J Colloid Interface Sci; 2005 Apr; 284(1):190-8. PubMed ID: 15752801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dispersion-stability diagram of boehmite nanoparticles in aqueous AOT solutions.
    Weichold O; Dederichs T; Möller M
    J Colloid Interface Sci; 2007 Feb; 306(2):300-6. PubMed ID: 17118382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The aerosol OT+n-butanol+n-heptane+water system: phase behavior, structure characterization, and application to Pt70Fe30 nanoparticle synthesis.
    Malheiro AR; Varanda LC; Perez J; Villullas HM
    Langmuir; 2007 Oct; 23(22):11015-20. PubMed ID: 17880122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of organic nanoparticles using microemulsions: their potential use in transdermal delivery.
    Destrée C; Debuigne F; Ghijsen J; Nagy JB
    Langmuir; 2007 Feb; 23(4):1965-73. PubMed ID: 17279682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface chemistry of surfactant AOT-stabilized SnO(2) nanoparticles and effect of temperature.
    Luwang MN; Ningthoujam RS; Singh NS; Tewari R; Srivastava SK; Vatsa RK
    J Colloid Interface Sci; 2010 Sep; 349(1):27-33. PubMed ID: 20557894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.