These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Fabrication of hydrophobic surfaces by coupling of Langmuir-Blodgett deposition and a self-assembled monolayer. Tsai PS; Yang YM; Lee YL Langmuir; 2006 Jun; 22(13):5660-5. PubMed ID: 16768491 [TBL] [Abstract][Full Text] [Related]
5. Control over wettability of polyethylene glycol surfaces using capillary lithography. Suh KY; Jon S Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394 [TBL] [Abstract][Full Text] [Related]
6. Wetting and wetting transitions on copper-based super-hydrophobic surfaces. Shirtcliffe NJ; McHale G; Newton MI; Perry CC Langmuir; 2005 Feb; 21(3):937-43. PubMed ID: 15667171 [TBL] [Abstract][Full Text] [Related]
7. Effect of surface depressions on wetting and interactions between hydrophobic pore array surfaces. Hansson PM; Hormozan Y; Brandner BD; Linnros J; Claesson PM; Swerin A; Schoelkopf J; Gane PA; Thormann E Langmuir; 2012 Jul; 28(30):11121-30. PubMed ID: 22769744 [TBL] [Abstract][Full Text] [Related]
8. Effects of geometrical characteristics of surface roughness on droplet wetting. Sheng YJ; Jiang S; Tsao HK J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406 [TBL] [Abstract][Full Text] [Related]
9. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. Choi W; Tuteja A; Mabry JM; Cohen RE; McKinley GH J Colloid Interface Sci; 2009 Nov; 339(1):208-16. PubMed ID: 19683717 [TBL] [Abstract][Full Text] [Related]
10. Wetting phenomena on micro-grooved aluminum surfaces and modeling of the critical droplet size. Sommers AD; Jacobi AM J Colloid Interface Sci; 2008 Dec; 328(2):402-11. PubMed ID: 18930243 [TBL] [Abstract][Full Text] [Related]
11. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures. Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928 [TBL] [Abstract][Full Text] [Related]
12. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials. Park CI; Jeong HE; Lee SH; Cho HS; Suh KY J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991 [TBL] [Abstract][Full Text] [Related]
13. Contact-angle hysteresis on super-hydrophobic surfaces. McHale G; Shirtcliffe NJ; Newton MI Langmuir; 2004 Nov; 20(23):10146-9. PubMed ID: 15518506 [TBL] [Abstract][Full Text] [Related]
14. Beyond the lotus effect: roughness influences on wetting over a wide surface-energy range. Spori DM; Drobek T; Zürcher S; Ochsner M; Sprecher C; Mühlebach A; Spencer ND Langmuir; 2008 May; 24(10):5411-7. PubMed ID: 18442274 [TBL] [Abstract][Full Text] [Related]
16. Effect of hydrophobicity on the stability of the wetting films of water formed on gold surfaces. Pan L; Jung S; Yoon RH J Colloid Interface Sci; 2011 Sep; 361(1):321-30. PubMed ID: 21664621 [TBL] [Abstract][Full Text] [Related]
17. SERS at structured palladium and platinum surfaces. Abdelsalam ME; Mahajan S; Bartlett PN; Baumberg JJ; Russell AE J Am Chem Soc; 2007 Jun; 129(23):7399-406. PubMed ID: 17506559 [TBL] [Abstract][Full Text] [Related]
18. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]