These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15723477)

  • 21. Surface charge microscopy: novel technique for mapping charge-mosaic surfaces in electrolyte solutions.
    Yin X; Drelich J
    Langmuir; 2008 Aug; 24(15):8013-20. PubMed ID: 18620435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Streaming potential across cation-exchange membranes in methanol-water electrolyte solutions.
    Barragán VM; Ruiz-Bauzá C; Imaña JL
    J Colloid Interface Sci; 2006 Feb; 294(2):473-81. PubMed ID: 16102776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Membrane Potential of Composite Bipolar Membrane in Ethanol-Water Solutions: The Role of the Membrane Interface.
    Chou TJ; Tanioka A
    J Colloid Interface Sci; 1999 Apr; 212(2):293-300. PubMed ID: 10092358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater.
    Benítez FJ; Acero JL; Leal AI; González M
    J Hazard Mater; 2009 Mar; 162(2-3):1438-45. PubMed ID: 18650003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diffusioosmosis of electrolyte solutions in a fine capillary slit.
    Ma HC; Keh HJ
    J Colloid Interface Sci; 2006 Jun; 298(1):476-86. PubMed ID: 16364357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection.
    Larchet C; Nouri S; Auclair B; Dammak L; Nikonenko V
    Adv Colloid Interface Sci; 2008 Jun; 139(1-2):45-61. PubMed ID: 18308286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dielectric spectroscopy of a nanofiltration membranes-electrolyte solution system: I. Low-frequency dielectric relaxation from the counterion polarization in pores and model development.
    Lu Q; Zhao K
    J Phys Chem B; 2010 Dec; 114(50):16783-91. PubMed ID: 21090732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory.
    Pellegrino J; Wright S; Ranvill J; Amy G
    Water Sci Technol; 2005; 51(6-7):85-92. PubMed ID: 16003965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dielectric characterization of a nanofiltration membrane in electrolyte solutions: its double-layer structure and ion permeation.
    Zhao K; Li Y
    J Phys Chem B; 2006 Feb; 110(6):2755-63. PubMed ID: 16471882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the use of the Stern-layer and the charged-layer formalisms for the interpretation of dielectric and electrokinetic properties of colloidal suspensions.
    López-García JJ; Grosse C; Horno J
    J Colloid Interface Sci; 2009 Jan; 329(2):384-9. PubMed ID: 18947835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrokinetic fingerprinting of grafted polyelectrolyte layers--a theoretical approach.
    Dukhin SS; Zimmermann R; Werner C
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):93-105. PubMed ID: 16901456
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of proton concentration on membrane potential across a weak amphoteric polymer membrane.
    Uematsu I; Jimbo T; Tanioka A
    J Colloid Interface Sci; 2002 Jan; 245(2):319-24. PubMed ID: 16290366
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on transmembrane electrical potential of nanofiltration membranes in KCl and MgCl2 solutions.
    Tu CH; Wang HL; Wang XL
    Langmuir; 2010 Nov; 26(22):17656-64. PubMed ID: 20942428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying the effect of membrane potential in chemical osmosis across bentonite membranes by virtual short-circuiting.
    Heister K; Kleingeld PJ; Gustav Loch JP
    J Colloid Interface Sci; 2005 Jun; 286(1):294-302. PubMed ID: 15848431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes.
    Coronell O; Mariñas BJ; Cahill DG
    Environ Sci Technol; 2011 May; 45(10):4513-20. PubMed ID: 21488633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flux decline during cross flow membrane filtration of electrolytic solution in presence of charged nano-colloids: a simple electrokinetic model.
    De S; Bhattacharjee S
    J Colloid Interface Sci; 2011 Jan; 353(2):530-6. PubMed ID: 20980014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interplay between the transport of solutes across nanofiltration membranes and the thermal properties of the thin active layer.
    Saidani H; Ben Amar N; Palmeri J; Deratani A
    Langmuir; 2010 Feb; 26(4):2574-83. PubMed ID: 19810684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrathin and stable active layer of dense composite membrane enabled by poly(dopamine).
    Li B; Liu W; Jiang Z; Dong X; Wang B; Zhong Y
    Langmuir; 2009 Jul; 25(13):7368-74. PubMed ID: 19366196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of charge properties of an ultrafiltration membrane modified by surface grafting of poly(allylamine) hydrochloride.
    Dejeu J; Lakard B; Fievet P; Lakard S
    J Colloid Interface Sci; 2009 May; 333(1):335-40. PubMed ID: 19215937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Layer-by-layer-assembled microfiltration membranes for biomolecule immobilization and enzymatic catalysis.
    Smuleac V; Butterfield DA; Bhattacharyya D
    Langmuir; 2006 Nov; 22(24):10118-24. PubMed ID: 17107008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.