These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 15723507)

  • 1. Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension.
    Kimura F; Kimura T; Tamura M; Hirai A; Ikuno M; Horii F
    Langmuir; 2005 Mar; 21(5):2034-7. PubMed ID: 15723507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions.
    Beck-Candanedo S; Roman M; Gray DG
    Biomacromolecules; 2005; 6(2):1048-54. PubMed ID: 15762677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy.
    Miller AF; Donald AM
    Biomacromolecules; 2003; 4(3):510-7. PubMed ID: 12741764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Onion epidermis as a new model to study the control of growth anisotropy in higher plants.
    Suslov D; Verbelen JP; Vissenberg K
    J Exp Bot; 2009; 60(14):4175-87. PubMed ID: 19684107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropic polymer composites synthesized by immobilizing cellulose nanocrystal suspensions specifically oriented under magnetic fields.
    Tatsumi M; Kimura F; Kimura T; Teramoto Y; Nishio Y
    Biomacromolecules; 2014 Dec; 15(12):4579-89. PubMed ID: 25390070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment.
    Hirai A; Inui O; Horii F; Tsuji M
    Langmuir; 2009 Jan; 25(1):497-502. PubMed ID: 19055323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals.
    Elazzouzi-Hafraoui S; Putaux JL; Heux L
    J Phys Chem B; 2009 Aug; 113(32):11069-75. PubMed ID: 19719262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation of paramecium swimming in a DC magnetic field.
    Nakaoka Y; Takeda R; Shimizu K
    Bioelectromagnetics; 2002 Dec; 23(8):607-13. PubMed ID: 12395416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls.
    Suslov D; Verbelen JP
    J Exp Bot; 2006; 57(10):2183-92. PubMed ID: 16720609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-dimensional iron(II) carboxylate linear chain polymer that exhibits a metamagnetic spin-canted antiferromagnetic to single-chain magnetic transition.
    Zheng YZ; Xue W; Tong ML; Chen XM; Grandjean F; Long GJ
    Inorg Chem; 2008 May; 47(10):4077-87. PubMed ID: 18422310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical genetic screening identifies a novel inhibitor of parallel alignment of cortical microtubules and cellulose microfibrils.
    Yoneda A; Higaki T; Kutsuna N; Kondo Y; Osada H; Hasezawa S; Matsui M
    Plant Cell Physiol; 2007 Oct; 48(10):1393-403. PubMed ID: 17875587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy.
    Iwamoto S; Kai W; Isogai A; Iwata T
    Biomacromolecules; 2009 Sep; 10(9):2571-6. PubMed ID: 19645441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase behaviour of binary mixtures of diamagnetic colloidal platelets in an external magnetic field.
    Phillips J; Schmidt M
    J Phys Condens Matter; 2011 May; 23(19):194111. PubMed ID: 21525550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic anisotropy and spin-glass behavior in single crystalline U2PdSi3.
    Li DX; Kimura A; Haga Y; Nimori S; Shikama T
    J Phys Condens Matter; 2011 Feb; 23(7):076003. PubMed ID: 21411890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures and magnetic properties of complexes of M(II)Cl2 (M = Cu, Ni, and Co) coordinated with 4-(N-tert-butyloxyamino)-2-(methoxymethylenyl)pyridine: 2D magnetic anisotropy of the aminoxyl-Co(II) complex in the crystalline state.
    Zhu Z; Karasawa S; Koga N
    Inorg Chem; 2005 Aug; 44(17):6004-11. PubMed ID: 16097820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accessibility of cellulose: Structural changes and their reversibility in aqueous media.
    Pönni R; Kontturi E; Vuorinen T
    Carbohydr Polym; 2013 Apr; 93(2):424-9. PubMed ID: 23499078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic orientation of 1,3,5-triphenyl-6-oxoverdazyl radical crystals.
    Fujiwara M; Tamaru M; Hara M; Suzuki K; Mukai K
    J Phys Chem B; 2007 Aug; 111(32):9492-5. PubMed ID: 17658792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of chiral interactions in cellulose supra-molecular microfibrils.
    Khandelwal M; Windle A
    Carbohydr Polym; 2014 Jun; 106():128-31. PubMed ID: 24721059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uniaxial alignment of the smallest diamagnetic susceptibility axis using time-dependent magnetic fields.
    Kimura T; Yoshino M; Yamane T; Yamato M; Tobita M
    Langmuir; 2004 Jul; 20(14):5669-72. PubMed ID: 16459577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the magnetic field on the supramolecular structure of chiral smectic C phases: (2)H NMR studies.
    Domenici V; Marini A; Veracini CA; Zhang J; Dong RY
    Chemphyschem; 2007 Dec; 8(18):2575-87. PubMed ID: 18067200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.