BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15723553)

  • 1. Swapping core residues in homologous proteins swaps folding mechanism.
    Dalessio PM; Boyer JA; McGettigan JL; Ropson IJ
    Biochemistry; 2005 Mar; 44(8):3082-90. PubMed ID: 15723553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-sheet proteins with nearly identical structures have different folding intermediates.
    Dalessio PM; Ropson IJ
    Biochemistry; 2000 Feb; 39(5):860-71. PubMed ID: 10653629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence and structural analysis of cellular retinoic acid-binding proteins reveals a network of conserved hydrophobic interactions.
    Gunasekaran K; Hagler AT; Gierasch LM
    Proteins; 2004 Feb; 54(2):179-94. PubMed ID: 14696180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the bile acid transportation system: the human ileal lipid-binding protein-cholyltaurine complex and its comparison with homologous structures.
    Kurz M; Brachvogel V; Matter H; Stengelin S; Thüring H; Kramer W
    Proteins; 2003 Feb; 50(2):312-28. PubMed ID: 12486725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of Trp-82 in the folding of intestinal fatty acid binding protein.
    Dalessio PM; Fromholt SE; Ropson IJ
    Proteins; 2005 Oct; 61(1):176-83. PubMed ID: 16080148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bile acid interactions with rabbit ileal lipid binding protein and an engineered helixless variant reveal novel ligand binding properties of a versatile beta-clam shell protein scaffold.
    Kouvatsos N; Thurston V; Ball K; Oldham NJ; Thomas NR; Searle MS
    J Mol Biol; 2007 Aug; 371(5):1365-77. PubMed ID: 17618650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling ligand recognition to protein folding in an engineered variant of rabbit ileal lipid binding protein.
    Kouvatsos N; Meldrum JK; Searle MS; Thomas NR
    Chem Commun (Camb); 2006 Nov; (44):4623-5. PubMed ID: 17082863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the differences in the folding kinetics of structurally homologous proteins based on predictions of the gross features of residue contacts.
    Ichimaru T; Kikuchi T
    Proteins; 2003 Jun; 51(4):515-30. PubMed ID: 12784211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The search for local native-like nucleation centers in the unfolded state of beta -sheet proteins.
    Nikiforovich GV; Frieden C
    Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10388-93. PubMed ID: 12140369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis and use of bile acid-MTS conjugates to probe the role of cysteines in the human apical sodium-dependent bile acid transporter (SLC10A2).
    Banerjee A; Ray A; Chang C; Swaan PW
    Biochemistry; 2005 Jun; 44(24):8908-17. PubMed ID: 15952798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR studies of 4-19F-phenylalanine-labeled intestinal fatty acid binding protein: evidence for conformational heterogeneity in the native state.
    Li H; Frieden C
    Biochemistry; 2005 Feb; 44(7):2369-77. PubMed ID: 15709749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence spectral changes during the folding of intestinal fatty acid binding protein.
    Ropson IJ; Dalessio PM
    Biochemistry; 1997 Jul; 36(28):8594-601. PubMed ID: 9214305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A residual structure in unfolded intestinal fatty acid binding protein consists of amino acids that are neighbors in the native state.
    Ropson IJ; Boyer JA; Dalessio PM
    Biochemistry; 2006 Feb; 45(8):2608-17. PubMed ID: 16489754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring sequence/folding space: folding studies on multiple hydrophobic core mutants of ubiquitin.
    Benítez-Cardoza CG; Stott K; Hirshberg M; Went HM; Woolfson DN; Jackson SE
    Biochemistry; 2004 May; 43(18):5195-203. PubMed ID: 15122885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent dyes as probes to study lipid-binding proteins.
    Pastukhov AV; Ropson IJ
    Proteins; 2003 Nov; 53(3):607-15. PubMed ID: 14579352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of kinetic folding intermediates of recombinant canine milk lysozyme by stopped-flow circular dichroism.
    Nakao M; Maki K; Arai M; Koshiba T; Nitta K; Kuwajima K
    Biochemistry; 2005 May; 44(17):6685-92. PubMed ID: 15850402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of hydrogen bonds precedes the rate-limiting formation of persistent structure in the folding of ACBP.
    Teilum K; Kragelund BB; Knudsen J; Poulsen FM
    J Mol Biol; 2000 Sep; 301(5):1307-14. PubMed ID: 10966822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic coupling of folding and prolyl isomerization of beta2-microglobulin studied by mutational analysis.
    Sakata M; Chatani E; Kameda A; Sakurai K; Naiki H; Goto Y
    J Mol Biol; 2008 Oct; 382(5):1242-55. PubMed ID: 18708068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast collapse but slow formation of secondary structure elements in the refolding transition of E. coli adenylate kinase.
    Ratner V; Amir D; Kahana E; Haas E
    J Mol Biol; 2005 Sep; 352(3):683-99. PubMed ID: 16098987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.