BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15723604)

  • 1. Cytochrome P450 3A polymorphisms and immunosuppressive drugs.
    Thervet E; Legendre C; Beaune P; Anglicheau D
    Pharmacogenomics; 2005 Jan; 6(1):37-47. PubMed ID: 15723604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome P450 3A polymorphisms and immunosuppressive drugs: an update.
    Anglicheau D; Legendre C; Beaune P; Thervet E
    Pharmacogenomics; 2007 Jul; 8(7):835-49. PubMed ID: 18240909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Cytochrome P450 3A polymorphism and its importance in cyclosporine and tacrolimus therapy in transplanted patients].
    Duricová J; Grundmann M
    Ceska Slov Farm; 2007 Oct; 56(5):220-4. PubMed ID: 18064802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CYP3A polymorphisms and immunosuppressive drugs in solid-organ transplantation.
    Wang J
    Expert Rev Mol Diagn; 2009 May; 9(4):383-90. PubMed ID: 19435458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practicability of pharmacogenetics in transplantation medicine.
    van Gelder T; van Schaik RH; Hesselink DA
    Clin Pharmacol Ther; 2014 Mar; 95(3):262-4. PubMed ID: 23995265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of CYP3A5 genetic polymorphism on tacrolimus daily dose requirements and acute rejection in renal graft recipients.
    Quteineh L; Verstuyft C; Furlan V; Durrbach A; Letierce A; Ferlicot S; Taburet AM; Charpentier B; Becquemont L
    Basic Clin Pharmacol Toxicol; 2008 Dec; 103(6):546-52. PubMed ID: 19067682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation.
    Zhang X; Liu ZH; Zheng JM; Chen ZH; Tang Z; Chen JS; Li LS
    Clin Transplant; 2005 Oct; 19(5):638-43. PubMed ID: 16146556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CYP3A5 polymorphism effect on cyclosporine pharmacokinetics in living donor renal transplant recipients: analysis by population pharmacokinetics.
    Song J; Kim MG; Choi B; Han NY; Yun HY; Yoon JH; Oh JM
    Ann Pharmacother; 2012 Sep; 46(9):1141-51. PubMed ID: 22947591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individualization of tacrolimus dosage basing on cytochrome P450 3A5 polymorphism--a prospective, randomized, controlled study.
    Chen SY; Li JL; Meng FH; Wang XD; Liu T; Li J; Liu LS; Fu Q; Huang M; Wang CX
    Clin Transplant; 2013; 27(3):E272-81. PubMed ID: 23432535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An up-date review on individualized dosage adjustment of calcineurin inhibitors in organ transplant patients.
    Masuda S; Inui K
    Pharmacol Ther; 2006 Oct; 112(1):184-98. PubMed ID: 16759707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of tacrolimus intraindividual variability and CYP3A5 genetic polymorphism on acute rejection in kidney transplantation.
    Ro H; Min SI; Yang J; Moon KC; Kim YS; Kim SJ; Ahn C; Ha J
    Ther Drug Monit; 2012 Dec; 34(6):680-5. PubMed ID: 23149441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic factors for individual administration of immunosuppressants in organ transplantation.
    Yu SF; Wu LH; Zheng SS
    Hepatobiliary Pancreat Dis Int; 2006 Aug; 5(3):337-44. PubMed ID: 16911928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower tacrolimus daily dose requirements and acute rejection rates in the CYP3A5 nonexpressers than expressers.
    Tang HL; Xie HG; Yao Y; Hu YF
    Pharmacogenet Genomics; 2011 Nov; 21(11):713-20. PubMed ID: 21886016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomarkers for individualized dosage adjustments in immunosuppressive therapy using calcineurin inhibitors after organ transplantation.
    Fu R; Tajima S; Suetsugu K; Watanabe H; Egashira N; Masuda S
    Acta Pharmacol Sin; 2019 Feb; 40(2):151-159. PubMed ID: 29950613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of CYP3A5 genotypes in dose requirements of tacrolimus and everolimus after heart transplantation.
    Kniepeiss D; Renner W; Trummer O; Wagner D; Wasler A; Khoschsorur GA; Truschnig-Wilders M; Tscheliessnigg KH
    Clin Transplant; 2011; 25(1):146-50. PubMed ID: 20041908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CYP3A5 *1 allele: impacts on early acute rejection and graft function in tacrolimus-based renal transplant recipients.
    Min SI; Kim SY; Ahn SH; Min SK; Kim SH; Kim YS; Moon KC; Oh JM; Kim SJ; Ha J
    Transplantation; 2010 Dec; 90(12):1394-400. PubMed ID: 21076384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacogenetics of immunosuppressive drugs: prospect of individual therapy for transplant patients.
    Ekbal NJ; Holt DW; Macphee IA
    Pharmacogenomics; 2008 May; 9(5):585-96. PubMed ID: 18466104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dosing tacrolimus based on CYP3A5 genotype: will it improve clinical outcome?
    van Gelder T; Hesselink DA
    Clin Pharmacol Ther; 2010 Jun; 87(6):640-1. PubMed ID: 20485320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individualized Tacrolimus Therapy for Pediatric Nephrotic Syndrome: Considerations for Ontogeny and Pharmacogenetics of CYP3A.
    Sun JY; Xu ZJ; Sun F; Guo HL; Ding XS; Chen F; Xu J
    Curr Pharm Des; 2018; 24(24):2765-2773. PubMed ID: 30156148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients.
    Fukudo M; Yano I; Yoshimura A; Masuda S; Uesugi M; Hosohata K; Katsura T; Ogura Y; Oike F; Takada Y; Uemoto S; Inui K
    Pharmacogenet Genomics; 2008 May; 18(5):413-23. PubMed ID: 18408564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.