These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 15723640)
1. Oxidative folding of the cystine knot motif in cyclotide proteins. Craik DJ; Daly NL Protein Pept Lett; 2005 Feb; 12(2):147-52. PubMed ID: 15723640 [TBL] [Abstract][Full Text] [Related]
2. Disulfide folding pathways of cystine knot proteins. Tying the knot within the circular backbone of the cyclotides. Daly NL; Clark RJ; Craik DJ J Biol Chem; 2003 Feb; 278(8):6314-22. PubMed ID: 12482862 [TBL] [Abstract][Full Text] [Related]
3. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Colgrave ML; Craik DJ Biochemistry; 2004 May; 43(20):5965-75. PubMed ID: 15147180 [TBL] [Abstract][Full Text] [Related]
4. A novel plant protein-disulfide isomerase involved in the oxidative folding of cystine knot defense proteins. Gruber CW; Cemazar M; Clark RJ; Horibe T; Renda RF; Anderson MA; Craik DJ J Biol Chem; 2007 Jul; 282(28):20435-46. PubMed ID: 17522051 [TBL] [Abstract][Full Text] [Related]
5. Alanine scanning mutagenesis of the prototypic cyclotide reveals a cluster of residues essential for bioactivity. Simonsen SM; Sando L; Rosengren KJ; Wang CK; Colgrave ML; Daly NL; Craik DJ J Biol Chem; 2008 Apr; 283(15):9805-13. PubMed ID: 18258598 [TBL] [Abstract][Full Text] [Related]
6. Knots in rings. The circular knotted protein Momordica cochinchinensis trypsin inhibitor-II folds via a stable two-disulfide intermediate. Cemazar M; Daly NL; Häggblad S; Lo KP; Yulyaningsih E; Craik DJ J Biol Chem; 2006 Mar; 281(12):8224-32. PubMed ID: 16547012 [TBL] [Abstract][Full Text] [Related]
7. Discovery and characterization of a linear cyclotide from Viola odorata: implications for the processing of circular proteins. Ireland DC; Colgrave ML; Nguyencong P; Daly NL; Craik DJ J Mol Biol; 2006 Apr; 357(5):1522-35. PubMed ID: 16488428 [TBL] [Abstract][Full Text] [Related]
8. Structural plasticity of the cyclic-cystine-knot framework: implications for biological activity and drug design. Clark RJ; Daly NL; Craik DJ Biochem J; 2006 Feb; 394(Pt 1):85-93. PubMed ID: 16300479 [TBL] [Abstract][Full Text] [Related]
9. Ultra-stable peptide scaffolds for protein engineering-synthesis and folding of the circular cystine knotted cyclotide cycloviolacin O2. Leta Aboye T; Clark RJ; Craik DJ; Göransson U Chembiochem; 2008 Jan; 9(1):103-13. PubMed ID: 18058973 [TBL] [Abstract][Full Text] [Related]
10. Disulfide mapping of the cyclotide kalata B1. Chemical proof of the cystic cystine knot motif. Göransson U; Craik DJ J Biol Chem; 2003 Nov; 278(48):48188-96. PubMed ID: 12960160 [TBL] [Abstract][Full Text] [Related]
11. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif. Daly NL; Clark RJ; Plan MR; Craik DJ Biochem J; 2006 Feb; 393(Pt 3):619-26. PubMed ID: 16207177 [TBL] [Abstract][Full Text] [Related]
12. The cyclotide family of circular miniproteins: nature's combinatorial peptide template. Craik DJ; Cemazar M; Wang CK; Daly NL Biopolymers; 2006; 84(3):250-66. PubMed ID: 16440288 [TBL] [Abstract][Full Text] [Related]
13. Nucleation of a key beta-turn promotes cyclotide oxidative folding. Tian S; de Veer SJ; Durek T; Wang CK; Craik DJ J Biol Chem; 2024 Apr; 300(4):107125. PubMed ID: 38432638 [TBL] [Abstract][Full Text] [Related]
14. The role of conserved Glu residue on cyclotide stability and activity: a structural and functional study of kalata B12, a naturally occurring Glu to Asp mutant. Wang CK; Clark RJ; Harvey PJ; Rosengren KJ; Cemazar M; Craik DJ Biochemistry; 2011 May; 50(19):4077-86. PubMed ID: 21466163 [TBL] [Abstract][Full Text] [Related]
15. Combined X-ray and NMR analysis of the stability of the cyclotide cystine knot fold that underpins its insecticidal activity and potential use as a drug scaffold. Wang CK; Hu SH; Martin JL; Sjögren T; Hajdu J; Bohlin L; Claeson P; Göransson U; Rosengren KJ; Tang J; Tan NH; Craik DJ J Biol Chem; 2009 Apr; 284(16):10672-83. PubMed ID: 19211551 [TBL] [Abstract][Full Text] [Related]
16. The structure of a two-disulfide intermediate assists in elucidating the oxidative folding pathway of a cyclic cystine knot protein. Cemazar M; Joshi A; Daly NL; Mark AE; Craik DJ Structure; 2008 Jun; 16(6):842-51. PubMed ID: 18547517 [TBL] [Abstract][Full Text] [Related]
17. Conformation and mode of membrane interaction in cyclotides. Spatial structure of kalata B1 bound to a dodecylphosphocholine micelle. Shenkarev ZO; Nadezhdin KD; Sobol VA; Sobol AG; Skjeldal L; Arseniev AS FEBS J; 2006 Jun; 273(12):2658-72. PubMed ID: 16817894 [TBL] [Abstract][Full Text] [Related]
18. Peptidomics of Circular Cysteine-Rich Plant Peptides: Analysis of the Diversity of Cyclotides from Viola tricolor by Transcriptome and Proteome Mining. Hellinger R; Koehbach J; Soltis DE; Carpenter EJ; Wong GK; Gruber CW J Proteome Res; 2015 Nov; 14(11):4851-62. PubMed ID: 26399495 [TBL] [Abstract][Full Text] [Related]
19. Chemical synthesis and biosynthesis of the cyclotide family of circular proteins. Gunasekera S; Daly NL; Anderson MA; Craik DJ IUBMB Life; 2006 Sep; 58(9):515-24. PubMed ID: 17002979 [TBL] [Abstract][Full Text] [Related]
20. Chemistry and biology of cyclotides: circular plant peptides outside the box. Burman R; Gunasekera S; Strömstedt AA; Göransson U J Nat Prod; 2014 Mar; 77(3):724-36. PubMed ID: 24527877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]