These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Directed Evolution of Propionyl-CoA Carboxylase for Succinate Biosynthesis. Liu Y; Jiang H Trends Biotechnol; 2021 Apr; 39(4):330-331. PubMed ID: 33632542 [TBL] [Abstract][Full Text] [Related]
23. Carbon-13 nuclear magnetic resonance analysis of [1-13C]glucose metabolism in Trypanosoma cruzi. Evidence of the presence of two alanine pools and of two CO2 fixation reactions. Frydman B; de los Santos C; Cannata JJ; Cazzulo JJ Eur J Biochem; 1990 Sep; 192(2):363-8. PubMed ID: 2120054 [TBL] [Abstract][Full Text] [Related]
24. Properties of succinyl-coenzyme A:L-malate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. Friedmann S; Steindorf A; Alber BE; Fuchs G J Bacteriol; 2006 Apr; 188(7):2646-55. PubMed ID: 16547052 [TBL] [Abstract][Full Text] [Related]
25. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth. Mattozzi Md; Ziesack M; Voges MJ; Silver PA; Way JC Metab Eng; 2013 Mar; 16():130-9. PubMed ID: 23376595 [TBL] [Abstract][Full Text] [Related]
26. Characterization of acetyl-CoA/propionyl-CoA carboxylase in Metallosphaera sedula. Carboxylating enzyme in the 3-hydroxypropionate cycle for autotrophic carbon fixation. Hügler M; Krieger RS; Jahn M; Fuchs G Eur J Biochem; 2003 Feb; 270(4):736-44. PubMed ID: 12581213 [TBL] [Abstract][Full Text] [Related]
27. Regulation of autotrophic CO2 fixation in the archaeon Thermoproteus neutrophilus. Ramos-Vera WH; Labonté V; Weiss M; Pauly J; Fuchs G J Bacteriol; 2010 Oct; 192(20):5329-40. PubMed ID: 20693323 [TBL] [Abstract][Full Text] [Related]
28. Carbon-13 nuclear magnetic resonance analysis of [1-13C]glucose metabolism in Crithidia fasciculata. Evidence of CO2 fixation by phosphoenolpyruvate carboxykinase. de los Santos C; Buldain G; Frydman B; Cannata JJ; Cazzulo JJ Eur J Biochem; 1985 Jun; 149(2):421-9. PubMed ID: 3922760 [TBL] [Abstract][Full Text] [Related]
29. Coassimilation of organic substrates via the autotrophic 3-hydroxypropionate bi-cycle in Chloroflexus aurantiacus. Zarzycki J; Fuchs G Appl Environ Microbiol; 2011 Sep; 77(17):6181-8. PubMed ID: 21764971 [TBL] [Abstract][Full Text] [Related]
30. Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. Tang KH; Barry K; Chertkov O; Dalin E; Han CS; Hauser LJ; Honchak BM; Karbach LE; Land ML; Lapidus A; Larimer FW; Mikhailova N; Pitluck S; Pierson BK; Blankenship RE BMC Genomics; 2011 Jun; 12():334. PubMed ID: 21714912 [TBL] [Abstract][Full Text] [Related]
31. Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO Loder AJ; Han Y; Hawkins AB; Lian H; Lipscomb GL; Schut GJ; Keller MW; Adams MWW; Kelly RM Metab Eng; 2016 Nov; 38():446-463. PubMed ID: 27771364 [TBL] [Abstract][Full Text] [Related]
32. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Berg IA; Kockelkorn D; Buckel W; Fuchs G Science; 2007 Dec; 318(5857):1782-6. PubMed ID: 18079405 [TBL] [Abstract][Full Text] [Related]
33. Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the epsilon subdivision of proteobacteria. Hügler M; Wirsen CO; Fuchs G; Taylor CD; Sievert SM J Bacteriol; 2005 May; 187(9):3020-7. PubMed ID: 15838028 [TBL] [Abstract][Full Text] [Related]
34. Evidence for an incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum. Fuchs G; Stupperich E Arch Microbiol; 1978 Jul; 118(1):121-5. PubMed ID: 29586 [TBL] [Abstract][Full Text] [Related]
35. 3-Hydroxypropionyl-coenzyme A synthetase from Metallosphaera sedula, an enzyme involved in autotrophic CO2 fixation. Alber BE; Kung JW; Fuchs G J Bacteriol; 2008 Feb; 190(4):1383-9. PubMed ID: 18165310 [TBL] [Abstract][Full Text] [Related]
36. [Physicochemical analysis of formation and self-organization of the components of the archaic cycle of CO2 fixation in hydrothermal systems]. Makarushev SA; Belonogova OV Biofizika; 2009; 54(4):748-59. PubMed ID: 19795799 [TBL] [Abstract][Full Text] [Related]
37. Rhodobacter sphaeroides uses a reductive route via propionyl coenzyme A to assimilate 3-hydroxypropionate. Schneider K; Asao M; Carter MS; Alber BE J Bacteriol; 2012 Jan; 194(2):225-32. PubMed ID: 22056933 [TBL] [Abstract][Full Text] [Related]
38. Characterization and directed evolution of propionyl-CoA carboxylase and its application in succinate biosynthetic pathway with two CO Liu X; Feng X; Ding Y; Gao W; Xian M; Wang J; Zhao G Metab Eng; 2020 Nov; 62():42-50. PubMed ID: 32860966 [TBL] [Abstract][Full Text] [Related]
39. [Carbon metabolism of filamentous anoxygenic phototrophic bacteria of the family Oscillochloridaceae]. Berg IA; Keppen OI; Krasil'nikova EN; Ugol'kova NV; Ivanovskiĭ RN Mikrobiologiia; 2005; 74(3):305-12. PubMed ID: 16119842 [TBL] [Abstract][Full Text] [Related]
40. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis. Huber H; Gallenberger M; Jahn U; Eylert E; Berg IA; Kockelkorn D; Eisenreich W; Fuchs G Proc Natl Acad Sci U S A; 2008 Jun; 105(22):7851-6. PubMed ID: 18511565 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]