These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 15724163)

  • 1. Tethered DNA hairpins facilitate electrochemical detection of DNA ligation.
    Zauner G; Wang Y; Lavesa-Curto M; MacDonald A; Mayes AG; Bowater RP; Butt JN
    Analyst; 2005 Mar; 130(3):345-9. PubMed ID: 15724163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly sensitive DNA detection and point mutation identification: an electrochemical approach based on the combined use of ligase and reverse molecular beacon.
    Wu ZS; Jiang JH; Shen GL; Yu RQ
    Hum Mutat; 2007 Jun; 28(6):630-7. PubMed ID: 17309058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical detection of nicotinamide adenine dinucleotide based on molecular beacon-like DNA and E. coli DNA ligase.
    He X; Ni X; Wang Y; Wang K; Jian L
    Talanta; 2011 Jan; 83(3):937-42. PubMed ID: 21147340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilized DNA hairpins for assay of sequential breaking and joining of DNA backbones.
    Scott BO; Lavesa-Curto M; Bullard DR; Butt JN; Bowater RP
    Anal Biochem; 2006 Nov; 358(1):90-8. PubMed ID: 16996469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of T4 DNA ligase using a solid-state electrochemiluminescence biosensing switch based on ferrocene-labeled molecular beacon.
    Wang X; Dong P; Yun W; Xu Y; He P; Fang Y
    Talanta; 2010 Mar; 80(5):1643-7. PubMed ID: 20152390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hairpin DNA probe based surface plasmon resonance biosensor used for the activity assay of E. coli DNA ligase.
    Luan Q; Xue Y; Yao X; Lu W
    Analyst; 2010 Feb; 135(2):414-8. PubMed ID: 20098778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.
    Zhou Q; Lin Y; Lin Y; Wei Q; Chen G; Tang D
    Talanta; 2016; 146():23-8. PubMed ID: 26695229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical detection of point mutation based on surface ligation reaction and biometallization.
    Zhang P; Chu X; Xu X; Shen G; Yu R
    Biosens Bioelectron; 2008 May; 23(10):1435-41. PubMed ID: 18242973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical biosensors for detection of point mutation based on surface ligation reaction and oligonucleotides modified gold nanoparticles.
    Wang Q; Yang L; Yang X; Wang K; He L; Zhu J
    Anal Chim Acta; 2011 Mar; 688(2):163-7. PubMed ID: 21334481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple, fast, and sensitive assay for the detection of DNA, thrombin, and adenosine triphosphate based on Dual-Hairpin DNA structure.
    He X; Wang G; Xu G; Zhu Y; Chen L; Zhang X
    Langmuir; 2013 Nov; 29(46):14328-34. PubMed ID: 24079405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A signal-on electrochemical DNA biosensor based on potential-assisted Cu(I)-catalyzed azide-alkyne cycloaddition mediated labeling of hairpin-like oligonucleotide with electroactive probe.
    Hu Q; Kong J; Li Y; Zhang X
    Talanta; 2016 Jan; 147():516-22. PubMed ID: 26592641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sensitive ligase-based ATP electrochemical assay using molecular beacon-like DNA.
    Wang Y; He X; Wang K; Ni X
    Biosens Bioelectron; 2010 May; 25(9):2101-6. PubMed ID: 20299199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins.
    Zhang B; Liu B; Tang D; Niessner R; Chen G; Knopp D
    Anal Chem; 2012 Jun; 84(12):5392-9. PubMed ID: 22632712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligase-based multiple DNA analysis by using an electrochemical sensor array.
    Wan Y; Zhang J; Liu G; Pan D; Wang L; Song S; Fan C
    Biosens Bioelectron; 2009 Jan; 24(5):1209-12. PubMed ID: 18701273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of an inhibitor specific to bacterial NAD+-dependent DNA ligases.
    Meier TI; Yan D; Peery RB; McAllister KA; Zook C; Peng SB; Zhao G
    FEBS J; 2008 Nov; 275(21):5258-71. PubMed ID: 18795946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using molecular beacon to monitor activity of E. coli DNA ligase.
    Liu L; Tang Z; Wang K; Tan W; Li J; Guo Q; Meng X; Ma C
    Analyst; 2005 Mar; 130(3):350-7. PubMed ID: 15724164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive electrogenerated chemiluminescent DNA-based biosensing switch for the determination of bleomycin.
    Li Y; Huang C; Zheng J; Qi H
    Talanta; 2013 Jan; 103():8-13. PubMed ID: 23200351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-linked electrochemical DNA ligation assay using magnetic beads.
    Stejskalová E; Horáková P; Vacek J; Bowater RP; Fojta M
    Anal Bioanal Chem; 2014 Jul; 406(17):4129-36. PubMed ID: 24820061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermus scotoductus and Rhodothermus marinus DNA ligases have higher ligation efficiencies than thermus thermophilus DNA ligase.
    Housby JN; Southern EM
    Anal Biochem; 2002 Mar; 302(1):88-94. PubMed ID: 11846380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator.
    Jin Y; Yao X; Liu Q; Li J
    Biosens Bioelectron; 2007 Jan; 22(6):1126-30. PubMed ID: 16730971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.