BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 15724168)

  • 1. Near-infrared spectroscopic observation of the ageing process in archaeological wood using a deuterium exchange method.
    Tsuchikawa S; Yonenobu H; Siesler HW
    Analyst; 2005 Mar; 130(3):379-84. PubMed ID: 15724168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study.
    Inagaki T; Siesler HW; Mitsui K; Tsuchikawa S
    Biomacromolecules; 2010 Sep; 11(9):2300-5. PubMed ID: 20831273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared spectroscopic monitoring of the water adsorption/desorption process in modern and archaeological wood.
    Inagaki T; Yonenobu H; Tsuchikawa S
    Appl Spectrosc; 2008 Aug; 62(8):860-5. PubMed ID: 18702858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: hardwood.
    Tsuchikawa S; Siesler HW
    Appl Spectrosc; 2003 Jun; 57(6):675-81. PubMed ID: 14658701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-infrared spectroscopic investigation of the hydrothermal degradation mechanism of wood as an analogue of archaeological wood. Part II: hardwood.
    Inagaki T; Mitsui K; Tsuchikawa S
    Appl Spectrosc; 2009 Jul; 63(7):753-8. PubMed ID: 19589212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I: softwood.
    Tsuchikawa S; Siesler HW
    Appl Spectrosc; 2003 Jun; 57(6):667-74. PubMed ID: 14658700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared spectroscopic investigation of the hydrothermal degradation mechanism of wood as an analogue of archaeological objects. Part I: softwood.
    Inagaki T; Mitsui K; Tsuchikawa S
    Appl Spectrosc; 2008 Nov; 62(11):1209-15. PubMed ID: 19007461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of hydroxyl groups in wood during heat treatment using NIR spectroscopy.
    Mitsui K; Inagaki T; Tsuchikawa S
    Biomacromolecules; 2008 Jan; 9(1):286-8. PubMed ID: 18067256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy.
    Suchy M; Virtanen J; Kontturi E; Vuorinen T
    Biomacromolecules; 2010 Feb; 11(2):515-20. PubMed ID: 20025261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Qualitative and quantitative changes of beech wood degraded by wood-rotting basidiomycetes monitored by Fourier transform infrared spectroscopic methods and multivariate data analysis.
    Fackler K; Schwanninger M; Gradinger C; Hinterstoisser B; Messner K
    FEMS Microbiol Lett; 2007 Jun; 271(2):162-9. PubMed ID: 17466029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-analytical study of degradation of lignin in archaeological waterlogged wood.
    Colombini MP; Lucejko JJ; Modugno F; Orlandi M; Tolppa EL; Zoia L
    Talanta; 2009 Nov; 80(1):61-70. PubMed ID: 19782193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy.
    Yeh TF; Yamada T; Capanema E; Chang HM; Chiang V; Kadla JF
    J Agric Food Chem; 2005 May; 53(9):3328-32. PubMed ID: 15853367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the weight percentage gain and of the acetyl group content of acetylated wood by means of different infrared spectroscopic methods.
    Stefke B; Windeisen E; Schwanninger M; Hinterstoisser B
    Anal Chem; 2008 Feb; 80(4):1272-9. PubMed ID: 18197697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral characterization of eucalyptus wood.
    Popescu CM; Popescu MC; Singurel G; Vasile C; Argyropoulos DS; Willfor S
    Appl Spectrosc; 2007 Nov; 61(11):1168-77. PubMed ID: 18028695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Application of near infrared spectroscopy in analysis of wood properties].
    Yao S; Pu JW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr; 29(4):974-8. PubMed ID: 19626884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared spectroscopic study of the physical and mechanical properties of wood with meso- and micro-scale anatomical observation.
    Tsuchikawa S; Hirashima Y; Sasaki Y; Ando K
    Appl Spectrosc; 2005 Jan; 59(1):86-93. PubMed ID: 15720742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy.
    Yeh TF; Chang HM; Kadla JF
    J Agric Food Chem; 2004 Mar; 52(6):1435-9. PubMed ID: 15030192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of wood stiffness and strength properties of hybrid larch by near-infrared spectroscopy.
    Fujimoto T; Yamamoto H; Tsuchikawa S
    Appl Spectrosc; 2007 Aug; 61(8):882-8. PubMed ID: 17716408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mechanical stretching, desorption and isotope exchange on deuterated eucalypt wood studied by near infrared spectroscopy.
    Guo F; Altaner CM
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():254-259. PubMed ID: 30557842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical characterisation of the whole plant cell wall of archaeological wood: an integrated approach.
    Zoia L; Tamburini D; Orlandi M; Łucejko JJ; Salanti A; Tolppa EL; Modugno F; Colombini MP
    Anal Bioanal Chem; 2017 Jul; 409(17):4233-4245. PubMed ID: 28484806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.