BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 15724279)

  • 1. Using amino acid patterns to accurately predict translation initiation sites.
    Liu H; Han H; Li J; Wong L
    In Silico Biol; 2004; 4(3):255-69. PubMed ID: 15724279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in-silico method for prediction of polyadenylation signals in human sequences.
    Liu H; Han H; Li J; Wong L
    Genome Inform; 2003; 14():84-93. PubMed ID: 15706523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences.
    Bininda-Emonds OR
    BMC Bioinformatics; 2005 Jun; 6():156. PubMed ID: 15969769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of a cDNA encoding vitellogenin in the banana shrimp, Penaeus (Litopenaeus) merguiensis and sites of vitellogenin mRNA expression.
    Phiriyangkul P; Utarabhand P
    Mol Reprod Dev; 2006 Apr; 73(4):410-23. PubMed ID: 16432892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of translation initiation sites in human mRNA sequences with AUG start codon in weak Kozak context: A neural network approach.
    Tikole S; Sankararamakrishnan R
    Biochem Biophys Res Commun; 2008 May; 369(4):1166-8. PubMed ID: 18342624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ensemble of support vector machines for predicting the membrane protein type directly from the amino acid sequence.
    Nanni L; Lumini A
    Amino Acids; 2008 Oct; 35(3):573-80. PubMed ID: 18427715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A class of edit kernels for SVMs to predict translation initiation sites in eukaryotic mRNAs.
    Li H; Jiang T
    J Comput Biol; 2005; 12(6):702-18. PubMed ID: 16108712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MetWAMer: eukaryotic translation initiation site prediction.
    Sparks ME; Brendel V
    BMC Bioinformatics; 2008 Sep; 9():381. PubMed ID: 18801175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using feature generation and feature selection for accurate prediction of translation initiation sites.
    Zeng F; Yap RH; Wong L
    Genome Inform; 2002; 13():192-200. PubMed ID: 14571388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of protein coding regions by the 3-base periodicity analysis of a DNA sequence.
    Yin C; Yau SS
    J Theor Biol; 2007 Aug; 247(4):687-94. PubMed ID: 17509616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. StackTIS: a stacked generalization approach for effective prediction of translation initiation sites.
    Tzanis G; Berberidis C; Vlahavas I
    Comput Biol Med; 2012 Jan; 42(1):61-9. PubMed ID: 22079568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simplified approach to disulfide connectivity prediction from protein sequences.
    Vincent M; Passerini A; Labbé M; Frasconi P
    BMC Bioinformatics; 2008 Jan; 9():20. PubMed ID: 18194539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes.
    Miyakawa S; Oguro A; Ohtsu T; Imataka H; Sonenberg N; Nakamura Y
    RNA; 2006 Oct; 12(10):1825-34. PubMed ID: 16940549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Support vector machines for learning to identify the critical positions of a protein.
    Dubey A; Realff MJ; Lee JH; Bommarius AS
    J Theor Biol; 2005 Jun; 234(3):351-61. PubMed ID: 15784270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal-3L: A 3-layer approach for predicting signal peptides.
    Shen HB; Chou KC
    Biochem Biophys Res Commun; 2007 Nov; 363(2):297-303. PubMed ID: 17880924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust prediction of mutation-induced protein stability change by property encoding of amino acids.
    Kang S; Chen G; Xiao G
    Protein Eng Des Sel; 2009 Feb; 22(2):75-83. PubMed ID: 19054789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the phosphorylation sites using hidden Markov models and machine learning methods.
    Senawongse P; Dalby AR; Yang ZR
    J Chem Inf Model; 2005; 45(4):1147-52. PubMed ID: 16045309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mRNA landscape at yeast translation initiation sites.
    Robbins-Pianka A; Rice MD; Weir MP
    Bioinformatics; 2010 Nov; 26(21):2651-5. PubMed ID: 20819958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PALMA: mRNA to genome alignments using large margin algorithms.
    Schulze U; Hepp B; Ong CS; Rätsch G
    Bioinformatics; 2007 Aug; 23(15):1892-900. PubMed ID: 17537755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.