These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 15724285)

  • 1. A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa.
    Sakharkar KR; Sakharkar MK; Chow VT
    In Silico Biol; 2004; 4(3):355-60. PubMed ID: 15724285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocomputational strategies for microbial drug target identification.
    Sakharkar KR; Sakharkar MK; Chow VT
    Methods Mol Med; 2008; 142():1-9. PubMed ID: 18437301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential genome analyses of metabolic enzymes in Pseudomonas aeruginosa for drug target identification.
    Perumal D; Lim CS; Sakharkar KR; Sakharkar MK
    In Silico Biol; 2007; 7(4-5):453-65. PubMed ID: 18391237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-iDT : tool for identification of drug target in bacteria and validation by Mycobacterium tuberculosis.
    Singh NK; Selvam SM; Chakravarthy P
    In Silico Biol; 2006; 6(6):485-93. PubMed ID: 17518759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico identification of potential therapeutic targets in the human pathogen Helicobacter pylori.
    Dutta A; Singh SK; Ghosh P; Mukherjee R; Mitter S; Bandyopadhyay D
    In Silico Biol; 2006; 6(1-2):43-7. PubMed ID: 16789912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico analysis of Burkholderia pseudomallei genome sequence for potential drug targets.
    Chong CE; Lim BS; Nathan S; Mohamed R
    In Silico Biol; 2006; 6(4):341-6. PubMed ID: 16922696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting multiple targets in Pseudomonas aeruginosa PAO1 using flux balance analysis of a reconstructed genome-scale metabolic network.
    Perumal D; Samal A; Sakharkar KR; Sakharkar MK
    J Drug Target; 2011 Jan; 19(1):1-13. PubMed ID: 20233082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and targeted disruption of two lipopolysaccharide biosynthesis genes, kdsA and waaG, of Pseudomonas aeruginosa PAO1 by site-directed mutagenesis.
    Perumal D; Sakharkar KR; Tang TH; Chow VT; Lim CS; Samal A; Sugiura N; Sakharkar MK
    J Mol Microbiol Biotechnol; 2010; 19(4):169-79. PubMed ID: 21042030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Druggability of human disease genes.
    Sakharkar MK; Sakharkar KR; Pervaiz S
    Int J Biochem Cell Biol; 2007; 39(6):1156-64. PubMed ID: 17446117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of genomics to select antibacterial targets.
    Pucci MJ
    Biochem Pharmacol; 2006 Mar; 71(7):1066-72. PubMed ID: 16412986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of essential genes in Streptococcus pneumoniae using bioinformatics and allelic replacement mutagenesis.
    Song JH; Ko KS
    Methods Mol Biol; 2008; 416():401-8. PubMed ID: 18392984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using genomics to develop novel antibacterial therapeutics.
    Nagaraj NS; Singh OV
    Crit Rev Microbiol; 2010 Nov; 36(4):340-8. PubMed ID: 20670176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico identification of putative drug targets from different metabolic pathways of Aeromonas hydrophila.
    Sharma V; Gupta P; Dixit A
    In Silico Biol; 2008; 8(3-4):331-8. PubMed ID: 19032165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycoplasma genitalium: a comparative genomics study of metabolic pathways for the identification of drug and vaccine targets.
    Butt AM; Tahir S; Nasrullah I; Idrees M; Lu J; Tong Y
    Infect Genet Evol; 2012 Jan; 12(1):53-62. PubMed ID: 22057004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing antibacterial vaccines in genomics and proteomics era.
    Kaushik DK; Sehgal D
    Scand J Immunol; 2008 Jun; 67(6):544-52. PubMed ID: 18397199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2.
    Livny J; Brencic A; Lory S; Waldor MK
    Nucleic Acids Res; 2006; 34(12):3484-93. PubMed ID: 16870723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial genomics and drug discovery: exploring innovative routes of drug discovery in the postgenomic era.
    Dougherty TJ; Miller PF
    IDrugs; 2006 Jun; 9(6):420-2. PubMed ID: 16752312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1.
    Oberhardt MA; Puchałka J; Fryer KE; Martins dos Santos VA; Papin JA
    J Bacteriol; 2008 Apr; 190(8):2790-803. PubMed ID: 18192387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel comparative genomics analysis for common drug and vaccine targets in Corynebacterium pseudotuberculosis and other CMN group of human pathogens.
    Barh D; Jain N; Tiwari S; Parida BP; D'Afonseca V; Li L; Ali A; Santos AR; Guimarães LC; de Castro Soares S; Miyoshi A; Bhattacharjee A; Misra AN; Silva A; Kumar A; Azevedo V
    Chem Biol Drug Des; 2011 Jul; 78(1):73-84. PubMed ID: 21443692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.