BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 15725015)

  • 1. Flexible docking in solution using metadynamics.
    Gervasio FL; Laio A; Parrinello M
    J Am Chem Soc; 2005 Mar; 127(8):2600-7. PubMed ID: 15725015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4.
    Morris GM; Goodsell DS; Huey R; Olson AJ
    J Comput Aided Mol Des; 1996 Aug; 10(4):293-304. PubMed ID: 8877701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential.
    Jiao D; Zhang J; Duke RE; Li G; Schnieders MJ; Ren P
    J Comput Chem; 2009 Aug; 30(11):1701-11. PubMed ID: 19399779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor rigidity and ligand mobility in trypsin-ligand complexes.
    Guvench O; Price DJ; Brooks CL
    Proteins; 2005 Feb; 58(2):407-17. PubMed ID: 15578663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling the full potential of flexible receptor docking using multiple crystallographic structures.
    Barril X; Morley SD
    J Med Chem; 2005 Jun; 48(13):4432-43. PubMed ID: 15974595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation.
    Mangoni M; Roccatano D; Di Nola A
    Proteins; 1999 May; 35(2):153-62. PubMed ID: 10223288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Ligand Binding/Unbinding Pathway by Selectively Enhanced Sampling of Ligand in a Protein-Ligand Complex.
    Shao Q; Zhu W
    J Phys Chem B; 2019 Sep; 123(38):7974-7983. PubMed ID: 31478672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Boltzmann thermodynamic integration (NBTI) for macromolecular systems: relative free energy of binding of trypsin to benzamidine and benzylamine.
    Ota N; Stroupe C; Ferreira-da-Silva JM; Shah SA; Mares-Guia M; Brunger AT
    Proteins; 1999 Dec; 37(4):641-53. PubMed ID: 10651279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations.
    Buch I; Giorgino T; De Fabritiis G
    Proc Natl Acad Sci U S A; 2011 Jun; 108(25):10184-9. PubMed ID: 21646537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic analysis of binding of p-substituted benzamidines to trypsin.
    Talhout R; Engberts JB
    Eur J Biochem; 2001 Mar; 268(6):1554-60. PubMed ID: 11248672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulation of protein-ligand interactions: challenges and applications.
    Hassan SA; Gracia L; Vasudevan G; Steinbach PJ
    Methods Mol Biol; 2005; 305():451-92. PubMed ID: 15940011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive Multilevel Splitting Method for Molecular Dynamics Calculation of Benzamidine-Trypsin Dissociation Time.
    Teo I; Mayne CG; Schulten K; Lelièvre T
    J Chem Theory Comput; 2016 Jun; 12(6):2983-9. PubMed ID: 27159059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models.
    Plattner N; Noé F
    Nat Commun; 2015 Jul; 6():7653. PubMed ID: 26134632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding binding affinity: a combined isothermal titration calorimetry/molecular dynamics study of the binding of a series of hydrophobically modified benzamidinium chloride inhibitors to trypsin.
    Talhout R; Villa A; Mark AE; Engberts JB
    J Am Chem Soc; 2003 Sep; 125(35):10570-9. PubMed ID: 12940739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SEEKR: Simulation Enabled Estimation of Kinetic Rates, A Computational Tool to Estimate Molecular Kinetics and Its Application to Trypsin-Benzamidine Binding.
    Votapka LW; Jagger BR; Heyneman AL; Amaro RE
    J Phys Chem B; 2017 Apr; 121(15):3597-3606. PubMed ID: 28191969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic effects play a central role in cold adaptation of trypsin.
    Brandsdal BO; Smalås AO; Aqvist J
    FEBS Lett; 2001 Jun; 499(1-2):171-5. PubMed ID: 11418134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaussian docking functions.
    McGann MR; Almond HR; Nicholls A; Grant JA; Brown FK
    Biopolymers; 2003 Jan; 68(1):76-90. PubMed ID: 12579581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trypsin-ligand binding free energy calculation with AMOEBA.
    Shi Y; Jiao D; Schnieders MJ; Ren P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2328-31. PubMed ID: 19965178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative molecular modeling analysis of-5-amidinoindole and benzamidine binding to thrombin and trypsin: specific H-bond formation contributes to high 5-amidinoindole potency and selectivity for thrombin and factor Xa.
    Zhou Y; Johnson ME
    J Mol Recognit; 1999; 12(4):235-41. PubMed ID: 10440994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.