BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15725057)

  • 21. The conserved C-terminal tetrapeptide of sorghum C(4) phosphoenolpyruvate carboxylase is indispensable for maximal catalytic activity, but not for homotetramer formation.
    Dong L; Patil S; Condon SA; Haas EJ; Chollet R
    Arch Biochem Biophys; 1999 Nov; 371(1):124-8. PubMed ID: 10525297
    [No Abstract]   [Full Text] [Related]  

  • 22. Phosphoenolpyruvate carboxylase protein kinase from soybean root nodules: partial purification, characterization, and up/down-regulation by photosynthate supply from the shoots.
    Zhang XQ; Chollet R
    Arch Biochem Biophys; 1997 Jul; 343(2):260-8. PubMed ID: 9224739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning of PEPC-1 from a C4 halophyte Suaeda aralocaspica without Kranz anatomy and its recombinant enzymatic activity in responses to abiotic stresses.
    Cheng G; Wang L; Lan H
    Enzyme Microb Technol; 2016 Feb; 83():57-67. PubMed ID: 26777251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of plant-type phosphoenolpyruvate carboxylases from rice: identification of two plant-specific regulatory regions of the allosteric enzyme.
    Muramatsu M; Suzuki R; Yamazaki T; Miyao M
    Plant Cell Physiol; 2015 Mar; 56(3):468-80. PubMed ID: 25505033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphoenolpyruvate carboxylase kinase is controlled by a similar signaling cascade in CAM and C(4) plants.
    Bakrim N; Brulfert J; Vidal J; Chollet R
    Biochem Biophys Res Commun; 2001 Sep; 286(5):1158-62. PubMed ID: 11527421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization and expression analysis of genes encoding phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase of Lotus japonicus, a model legume.
    Nakagawa T; Izumi T; Banba M; Umehara Y; Kouchi H; Izui K; Hata S
    Mol Plant Microbe Interact; 2003 Apr; 16(4):281-8. PubMed ID: 12744456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An engineered change in the L-malate sensitivity of a site-directed mutant of sorghum phosphoenolpyruvate carboxylase: the effect of sequential mutagenesis and S-carboxymethylation at position 8.
    Duff SM; Lepiniec L; Crétin C; Andreo CS; Condon SA; Sarath G; Vidal J; Gadal P; Chollet R
    Arch Biochem Biophys; 1993 Oct; 306(1):272-6. PubMed ID: 8215415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partial purification and characterization of phosphoenolpyruvate carboxylase protein-serine kinase from illuminated maize leaves.
    Wang YH; Chollet R
    Arch Biochem Biophys; 1993 Aug; 304(2):496-502. PubMed ID: 8346924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and biochemical characterization of citrate binding to AtPPC3, a plant-type phosphoenolpyruvate carboxylase from Arabidopsis thaliana.
    Connell MB; Lee MJY; Li J; Plaxton WC; Jia Z
    J Struct Biol; 2018 Dec; 204(3):507-512. PubMed ID: 30419358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and biochemical evidence of the glucose 6-phosphate-allosteric site of maize C4-phosphoenolpyruvate carboxylase: its importance in the overall enzyme kinetics.
    Muñoz-Clares RA; González-Segura L; Juárez-Díaz JA; Mújica-Jiménez C
    Biochem J; 2020 Jun; 477(11):2095-2114. PubMed ID: 32459324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The PEP-carboxylase kinase gene family in Glycine max (GmPpcK1-4): an in-depth molecular analysis with nodulated, non-transgenic and transgenic plants.
    Xu W; Sato SJ; Clemente TE; Chollet R
    Plant J; 2007 Mar; 49(5):910-23. PubMed ID: 17257170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of phosphoenolpyruvate carboxylase in PVY(NTN)-infected tobacco plants.
    Müller K; Doubnerová V; Synková H; Cerovská N; Ryslavá H
    Biol Chem; 2009 Mar; 390(3):245-51. PubMed ID: 19090725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial- and plant-type phosphoenolpyruvate carboxylase polypeptides interact in the hetero-oligomeric Class-2 PEPC complex of developing castor oil seeds.
    Gennidakis S; Rao S; Greenham K; Uhrig RG; O'Leary B; Snedden WA; Lu C; Plaxton WC
    Plant J; 2007 Dec; 52(5):839-49. PubMed ID: 17894783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Site-directed mutagenesis of Flaveria trinervia phosphoenolpyruvate carboxylase: Arg450 and Arg767 are essential for catalytic activity and Lys829 affects substrate binding.
    Gao Y; Woo KC
    FEBS Lett; 1996 Sep; 392(3):285-8. PubMed ID: 8774863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-level expression of maize C4-type phosphoenolpyruvate carboxylase in Escherichia coli and its rapid purification.
    Dong LY; Hata S; Izui K
    Biosci Biotechnol Biochem; 1997 Mar; 61(3):545-6. PubMed ID: 9095558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light regulation of the photosynthetic phosphoenolpyruvate carboxylase (PEPC) in Hydrilla verticillata.
    Rao S; Reiskind J; Bowes G
    Plant Cell Physiol; 2006 Sep; 47(9):1206-16. PubMed ID: 16936335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular and structural analysis of C4-specific PEPC isoform from Pennisetum glaucum plays a role in stress adaptation.
    Singh J; Reddy GM; Agarwal A; Chandrasekhar K; Sopory SK; Reddy MK; Kaul T
    Gene; 2012 Jun; 500(2):224-31. PubMed ID: 22712066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production in Escherichia coli of active Sorghum phosphoenolpyruvate carboxylase which can be phosphorylated.
    Crétin C; Bakrim N; Kéryer E; Santi S; Lepiniec L; Vidal J; Gadal P
    Plant Mol Biol; 1991 Jul; 17(1):83-8. PubMed ID: 1868224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thioredoxin-mediated reductive activation of a protein kinase for the regulatory phosphorylation of C4-form phosphoenolpyruvate carboxylase from maize.
    Saze H; Ueno Y; Hisabori T; Hayashi H; Izui K
    Plant Cell Physiol; 2001 Dec; 42(12):1295-302. PubMed ID: 11773521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and functional verification of archaeal-type phosphoenolpyruvate carboxylase, a missing link in archaeal central carbohydrate metabolism.
    Ettema TJ; Makarova KS; Jellema GL; Gierman HJ; Koonin EV; Huynen MA; de Vos WM; van der Oost J
    J Bacteriol; 2004 Nov; 186(22):7754-62. PubMed ID: 15516590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.