These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

942 related articles for article (PubMed ID: 15725072)

  • 1. Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant.
    Bai C; Chan FY; Wang Y
    Biochem J; 2005 Jul; 389(Pt 1):27-35. PubMed ID: 15725072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of a Candida albicans gene, tightly linked to URA3, coding for a putative transcription factor that suppresses a Saccharomyces cerevisiae aft1 mutation.
    García MG; O'Connor JE; García LL; Martínez SI; Herrero E; del Castillo Agudo L
    Yeast; 2001 Mar; 18(4):301-11. PubMed ID: 11223939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [CaSRB9, a novel Candida albicans gene, plays a role in morphogenesis of Saccharomyces cerevisiae].
    Zhou Z; Cao F; Chen JY
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 May; 34(3):298-304. PubMed ID: 12019441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans.
    Weissman Z; Shemer R; Conibear E; Kornitzer D
    Mol Microbiol; 2008 Jul; 69(1):201-17. PubMed ID: 18466294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron.
    Jensen LT; Culotta VC
    J Mol Biol; 2002 Apr; 318(2):251-60. PubMed ID: 12051835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Cloning and functional study of CaPPe1 in Candida albicans by using Saccharomyses cerevisiae model system].
    Cao F; Chen JY
    Shi Yan Sheng Wu Xue Bao; 2005 Apr; 38(2):119-25. PubMed ID: 16011244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans.
    Biswas K; Morschhäuser J
    Mol Microbiol; 2005 May; 56(3):649-69. PubMed ID: 15819622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae.
    Lesuisse E; Knight SA; Camadro JM; Dancis A
    Yeast; 2002 Mar; 19(4):329-40. PubMed ID: 11870856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae.
    Casas C; Aldea M; Espinet C; Gallego C; Gil R; Herrero E
    Yeast; 1997 Jun; 13(7):621-37. PubMed ID: 9200812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A functional analysis of the Candida albicans homolog of Saccharomyces cerevisiae VPS4.
    Lee SA; Jones J; Khalique Z; Kot J; Alba M; Bernardo S; Seghal A; Wong B
    FEMS Yeast Res; 2007 Sep; 7(6):973-85. PubMed ID: 17506830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization.
    Weissman Z; Kornitzer D
    Mol Microbiol; 2004 Aug; 53(4):1209-20. PubMed ID: 15306022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of iron-binding motifs in Candida albicans high-affinity iron permease CaFtr1p by site-directed mutagenesis.
    Fang HM; Wang Y
    Biochem J; 2002 Dec; 368(Pt 2):641-7. PubMed ID: 12207560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sec20p-interacting proteins (Tip20p, Ufe1p) in the retrograde secretory pathway of the fungal pathogen Candida albicans.
    Weber Y; Swoboda RK; Ernst JF
    Mol Genet Genomics; 2002 Dec; 268(4):468-76. PubMed ID: 12471444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and characterization of the SEC18 gene from Candida albicans.
    Nieto A; Sanz P; Sentandreu R; del Castillo Agudo L
    Yeast; 1993 Aug; 9(8):875-87. PubMed ID: 8212895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cloning of Candida albicans CaBEM1 and its role in filamentous growth of Saccharomyces cerevisiae].
    Zhou Z; Liu HP; Chen JY
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Sep; 34(5):553-9. PubMed ID: 12198555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of Zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic Yeast Candida albicans.
    Kim MJ; Kil M; Jung JH; Kim J
    J Microbiol Biotechnol; 2008 Feb; 18(2):242-7. PubMed ID: 18309267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of Candida albicans genes whose Saccharomyces cerevisiae homologues are involved in endocytosis.
    Martin R; Hellwig D; Schaub Y; Bauer J; Walther A; Wendland J
    Yeast; 2007 Jun; 24(6):511-22. PubMed ID: 17431925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a Candida albicans homologue of the PHO85 gene, a negative regulator of the PHO system in Saccharomyces cerevisiae.
    Miyakawa Y
    Yeast; 2000 Aug; 16(11):1045-51. PubMed ID: 10923026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The centromere-binding factor Cbf1p from Candida albicans complements the methionine auxotrophic phenotype of Saccharomyces cerevisiae.
    Eck R; Stoyan T; Künkel W
    Yeast; 2001 Aug; 18(11):1047-52. PubMed ID: 11481675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single-copy suppressor of the Saccharomyces cerevisae late-mitotic mutants cdc15 and dbf2 is encoded by the Candida albicans CDC14 gene.
    Jiménez J; Cid VJ; Nombela C; Sánchez M
    Yeast; 2001 Jun; 18(9):849-58. PubMed ID: 11427967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.