BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15725402)

  • 1. Strengthening of non-NMDA receptor-dependent horizontal pathways between primary and lateral secondary visual cortices after NMDA receptor-dependent oscillatory neural activities.
    Yoshimura H; Sugai T; Segami N; Onoda N
    Brain Res; 2005 Mar; 1036(1-2):60-9. PubMed ID: 15725402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDA receptor-dependent oscillatory signal outputs from the retrosplenial cortex triggered by a non-NMDA receptor-dependent signal input from the visual cortex.
    Yoshimura H; Sugai T; Honjo M; Segami N; Onoda N
    Brain Res; 2005 May; 1045(1-2):12-21. PubMed ID: 15910758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of caffeine reveals input frequency-dependent determination of signal-traveling routes between primary and secondary visual cortices in rats.
    Yoshimura H; Sugai T; Honjo M; Kaneyama K; Segami N; Kato N
    Neurosci Res; 2010 Jan; 66(1):30-6. PubMed ID: 19804799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic AMP-dependent attenuation of oscillatory-activity-induced intercortical strengthening of horizontal pathways between insular and parietal cortices.
    Yoshimura H; Honjo M; Segami N; Kaneyama K; Sugai T; Mashiyama Y; Onoda N
    Brain Res; 2006 Jan; 1069(1):86-95. PubMed ID: 16386713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between non-NMDA and NMDA receptor activation during oscillatory wave propagation: Analyses of caffeine-induced oscillations in the visual cortex of rats.
    Yoshimura H; Sugai T; Kato N; Tominaga T; Tominaga Y; Hasegawa T; Yao C; Akamatsu T
    Neural Netw; 2016 Jul; 79():141-9. PubMed ID: 27136667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opening of shortcut circuits between visual and retrosplenial granular cortices of rats.
    Yoshimura H; Mashiyama Y; Kaneyama K; Nagao T; Segami N
    Neuroreport; 2007 Aug; 18(13):1315-8. PubMed ID: 17762704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-dependent emergence of oscillatory signal flow between the primary and secondary visual cortices in rat brain slices.
    Yoshimura H; Kato N; Sugai T; Segami N; Onoda N
    Brain Res; 2003 Nov; 990(1-2):172-81. PubMed ID: 14568342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodic oscillatory activity in parahippocampal slices maintained in vitro.
    Kano T; Inaba Y; Avoli M
    Neuroscience; 2005; 130(4):1041-53. PubMed ID: 15652999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMDA receptor-dependent high-frequency network oscillations (100-300 Hz) in rat hippocampal slices.
    Papatheodoropoulos C
    Neurosci Lett; 2007 Mar; 414(3):197-202. PubMed ID: 17316998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrates for coincidence detection and calcium signaling for induction of synaptic potentiation in the neonatal visual cortex.
    Schrader LA; Perrett SP; Ye L; Friedlander MJ
    J Neurophysiol; 2004 Jun; 91(6):2747-64. PubMed ID: 14973315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices.
    Myme CI; Sugino K; Turrigiano GG; Nelson SB
    J Neurophysiol; 2003 Aug; 90(2):771-9. PubMed ID: 12672778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Input-selective potentiation and rebalancing of primary sensory cortex afferents by endogenous acetylcholine.
    Kuo MC; Rasmusson DD; Dringenberg HC
    Neuroscience; 2009 Sep; 163(1):430-41. PubMed ID: 19531370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala.
    Faber ES; Delaney AJ; Sah P
    Nat Neurosci; 2005 May; 8(5):635-41. PubMed ID: 15852010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of behavior-related excitatory inputs to a central pacemaker nucleus in a weakly electric fish.
    Curti S; Comas V; Rivero C; Borde M
    Neuroscience; 2006 Jun; 140(2):491-504. PubMed ID: 16563638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms underlying dedepression of synaptic NMDA receptors in the hippocampus.
    Morishita W; Malenka RC
    J Neurophysiol; 2008 Jan; 99(1):254-63. PubMed ID: 17989241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic organization and input-specific short-term plasticity in anterior cingulate cortical neurons with intact thalamic inputs.
    Lee CM; Chang WC; Chang KB; Shyu BC
    Eur J Neurosci; 2007 May; 25(9):2847-61. PubMed ID: 17561847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of low-frequency-induced synaptic depression in the developing CA3-CA1 hippocampal synapses by NMDA and metabotropic glutamate receptor activation.
    Strandberg J; Wasling P; Gustafsson B
    J Neurophysiol; 2009 May; 101(5):2252-62. PubMed ID: 19225168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recruiting extrasynaptic NMDA receptors augments synaptic signaling.
    Harris AZ; Pettit DL
    J Neurophysiol; 2008 Feb; 99(2):524-33. PubMed ID: 18057106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experience-dependent changes in NMDA receptor composition at mature central synapses.
    Kopp C; Longordo F; Lüthi A
    Neuropharmacology; 2007 Jul; 53(1):1-9. PubMed ID: 17499817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taurine potentiates presynaptic NMDA receptors in hippocampal Schaffer collateral axons.
    Suárez LM; Solís JM
    Eur J Neurosci; 2006 Jul; 24(2):405-18. PubMed ID: 16836643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.