BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 15725627)

  • 1. Transcript copy number of genes for DNA repair and translesion synthesis in yeast: contribution of transcription rate and mRNA stability to the steady-state level of each mRNA along with growth in glucose-fermentative medium.
    Michán C; Monje-Casas F; Pueyo C
    DNA Repair (Amst); 2005 Apr; 4(4):469-78. PubMed ID: 15725627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absolute transcript levels of thioredoxin- and glutathione-dependent redox systems in Saccharomyces cerevisiae: response to stress and modulation with growth.
    Monje-Casas F; Michán C; Pueyo C
    Biochem J; 2004 Oct; 383(Pt 1):139-47. PubMed ID: 15222878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcript analysis of 250 novel yeast genes from chromosome XIV.
    Planta RJ; Brown AJ; Cadahia JL; Cerdan ME; de Jonge M; Gent ME; Hayes A; Kolen CP; Lombardia LJ; Sefton M; Oliver SG; Thevelein J; Tournu H; van Delft YJ; Verbart DJ; Winderickx J
    Yeast; 1999 Mar; 15(4):329-50. PubMed ID: 10206192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of pyruvate carboxylase isozyme (PYC1, PYC2) gene expression in Saccharomyces cerevisiae during fermentative and nonfermentative growth.
    Brewster NK; Val DL; Walker ME; Wallace JC
    Arch Biochem Biophys; 1994 May; 311(1):62-71. PubMed ID: 8185321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription patterns of PMA1 and PMA2 genes and activity of plasma membrane H+-ATPase in Saccharomyces cerevisiae during diauxic growth and stationary phase.
    Fernandes AR; Sá-Correia I
    Yeast; 2003 Feb; 20(3):207-19. PubMed ID: 12557274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rsf1p is required for an efficient metabolic shift from fermentative to glycerol-based respiratory growth in S. cerevisiae.
    Roberts GG; Hudson AP
    Yeast; 2009 Feb; 26(2):95-110. PubMed ID: 19235764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in environmental stress monitored by expression of the stress response protein Hsp12p.
    Nisamedtinov I; Lindsey GG; Karreman R; Orumets K; Koplimaa M; Kevvai K; Paalme T
    FEMS Yeast Res; 2008 Sep; 8(6):829-38. PubMed ID: 18625028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. There is a steady-state transcriptome in exponentially growing yeast cells.
    Pelechano V; Pérez-Ortín JE
    Yeast; 2010 Jul; 27(7):413-22. PubMed ID: 20301094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saccharomyces cerevisiae colony growth and ageing: biphasic growth accompanied by changes in gene expression.
    Meunier JR; Choder M
    Yeast; 1999 Sep; 15(12):1159-69. PubMed ID: 10487919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C; Cárdenas J; Melo F; Agosin E
    Yeast; 2005 Apr; 22(5):369-83. PubMed ID: 15806604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategy of transcription regulation in the budding yeast.
    Levy S; Ihmels J; Carmi M; Weinberger A; Friedlander G; Barkai N
    PLoS One; 2007 Feb; 2(2):e250. PubMed ID: 17327914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation: both low- and high-affinity Hxt transporters are expressed.
    Perez M; Luyten K; Michel R; Riou C; Blondin B
    FEMS Yeast Res; 2005 Feb; 5(4-5):351-61. PubMed ID: 15691740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative splicing of c-fos pre-mRNA: contribution of the rates of synthesis and degradation to the copy number of each transcript isoform and detection of a truncated c-Fos immunoreactive species.
    Jurado J; Fuentes-Almagro CA; Prieto-Alamo MJ; Pueyo C
    BMC Mol Biol; 2007 Sep; 8():83. PubMed ID: 17888145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase.
    Larisch C; Nakunst D; Hüser AT; Tauch A; Kalinowski J
    BMC Genomics; 2007 Jan; 8():4. PubMed ID: 17204139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression.
    Rautio JJ; Huuskonen A; Vuokko H; Vidgren V; Londesborough J
    Yeast; 2007 Sep; 24(9):741-60. PubMed ID: 17605133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation.
    Rossignol T; Dulau L; Julien A; Blondin B
    Yeast; 2003 Dec; 20(16):1369-85. PubMed ID: 14663829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of yeast for detection of endogenous abasic lesions, their source, and their repair.
    Boiteux S; Guillet M
    Methods Enzymol; 2006; 408():79-91. PubMed ID: 16793364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of genes with nutrient-controlled expression by PCR-mapping in the yeast Saccharomyces cerevisiae.
    Crauwels M; Winderickx J; de Winde JH; Thevelein JM
    Yeast; 1997 Aug; 13(10):973-84. PubMed ID: 9271111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation.
    Riou C; Nicaud JM; Barre P; Gaillardin C
    Yeast; 1997 Aug; 13(10):903-15. PubMed ID: 9271106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.