These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15725656)

  • 61. Engineering the precursor pool to modulate the production of pamamycins in the heterologous host S. albus J1074.
    Gummerlich N; Manderscheid N; Rebets Y; Myronovskyi M; Gläser L; Kuhl M; Wittmann C; Luzhetskyy A
    Metab Eng; 2021 Sep; 67():11-18. PubMed ID: 34051369
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nonactin biosynthesis: unexpected patterns of label incorporation from 4,6-dioxoheptanoate show evidence of a degradation pathway for levulinate through propionate in Streptomyces griseus.
    Rong J; Nelson ME; Kusche B; Priestley ND
    J Nat Prod; 2010 Dec; 73(12):2009-12. PubMed ID: 21138242
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A linear hydroxymethyl tetramate undergoes an acetylation-elimination process for exocyclic methylene formation in the biosynthetic pathway of pyrroindomycins.
    Zheng Q; Wu Z; Sun P; Chen D; Tian Z; Liu W
    Org Biomol Chem; 2016 Dec; 15(1):88-91. PubMed ID: 27942669
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Biosynthesis of cladospirone bisepoxide, a member of the spirobisnaphthalene family.
    Bode HB; Wegner B; Zeeck A
    J Antibiot (Tokyo); 2000 Feb; 53(2):153-7. PubMed ID: 10805575
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biosynthesis of chloramphenicol. Studies on the origin of the dichloroacetyl moiety.
    Simonsen JN; Paramasigamani K; Vining LC; McInnes AG; Walter JA; Wright JL
    Can J Microbiol; 1978 Feb; 24(2):136-42. PubMed ID: 647471
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Studies on cochleamycins, novel antitumor antibiotics. III. Biosyntheses of cochleamycins: incorporation of 13C- and 2H-labeled compounds into cochleamycins.
    Shindo K; Sakakibara M; Kawai H; Seto H
    J Antibiot (Tokyo); 1996 Mar; 49(3):249-52. PubMed ID: 8626239
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A 15N nuclear magnetic resonance study of the biosynthesis of quinoxaline antibiotics.
    Reid DG; Doddrell DM; Williams DH; Fox KR
    Biochim Biophys Acta; 1984 Mar; 798(1):111-4. PubMed ID: 6704417
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Isolation, Biosynthetic Investigation, and Biological Evaluation of Maniwamycin G, an Azoxyalkene Compound from
    Tatsukawa A; Tanaka Y; Nagano H; Fukumoto A; Anzai Y; Arakawa K
    J Nat Prod; 2022 Jul; 85(7):1867-1871. PubMed ID: 35694852
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Application of 13C-NMR to the biosynthetic investigations. III. Incorporation of propionate-3-13C into aureothricin (author's transl)].
    Yamazaki M; Maebayashi Y; Kato F; Koyama Y
    Yakugaku Zasshi; 1975 Mar; 95(3):347-9. PubMed ID: 1171186
    [No Abstract]   [Full Text] [Related]  

  • 70. Synthesis of southern (C1'-C11') and eastern (C8-C18) fragments of pamamycin-607, an aerial mycelium-inducing substance of Streptomyces alboniger.
    Kiyota H; Furuya Y; Kuwahara S; Oritani T
    Biosci Biotechnol Biochem; 2001 Dec; 65(12):2630-7. PubMed ID: 11826957
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Studies of nitrogen metabolism using 13C NMR spectroscopy. 1. Streptonigrin biosynthesis.
    Gould S; Chang CC
    J Am Chem Soc; 1978 Mar; 100(5):1624-6. PubMed ID: 624807
    [No Abstract]   [Full Text] [Related]  

  • 72. Biosynthesis of photodynamically active rubellins and structure elucidation of new anthraquinone derivatives produced by Ramularia collo-cygni.
    Miethbauer S; Haase S; Schmidtke KU; Günther W; Heiser I; Liebermann B
    Phytochemistry; 2006 Jun; 67(12):1206-13. PubMed ID: 16780904
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Investigations of the biosynthesis of novobiocin.
    Calvert RT; Spring MS; Stoker JR
    J Pharm Pharmacol; 1972 Dec; 24(12):972-8. PubMed ID: 4146530
    [No Abstract]   [Full Text] [Related]  

  • 74. Biosynthesis of puromycin in Streptomyces alboniger. Possible precursors of the antibiotic in a commercial sample.
    Pattabiraman TN; Pogell BM
    Biochim Biophys Acta; 1969 May; 182(1):245-7. PubMed ID: 5792851
    [No Abstract]   [Full Text] [Related]  

  • 75. Biosynthesis of lasalocid A: biochemical mechanism for assembly of the carbon framework.
    Sherman MM; Hutchinson CR
    Biochemistry; 1987 Jan; 26(2):438-45. PubMed ID: 3828316
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Biosynthetic incorporation of (1-13C)glucosamine and (6-13C)glucose into neomycin.
    Reinhart KL; Malik JM; Nystrom RS; Stroshane RM; Truitt ST; Taniguchi M; Rolls JP; Haak WJ; Ruff BA
    J Am Chem Soc; 1974 Apr; 96(7):2263-5. PubMed ID: 4833646
    [No Abstract]   [Full Text] [Related]  

  • 77. Biosynthesis of staurosporine, 2. Incorporation of tryptophan.
    Meksuriyen D; Cordell GA
    J Nat Prod; 1988; 51(5):893-9. PubMed ID: 3204381
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Study of the biosynthesis of a carbohydrate fragment of rubomycin].
    Paranosenkova VI; Karpov VL
    Antibiotiki; 1976 Apr; 21(4):299-301. PubMed ID: 5949
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Two new α-class milbemycin metabolites from mutant Streptomyces avermitilis NEAU1069-3.
    Li LJ; Zhou D; Chen AL; Huang J; Zhang H; Wang JD; Xiang WS
    J Antibiot (Tokyo); 2015 May; 68(5):354-6. PubMed ID: 25424970
    [No Abstract]   [Full Text] [Related]  

  • 80. D-glucosamine and L-citrulline, precursors in mitomycin biosynthesis by Streptomyces verticillatus.
    Hornemann Y; Kehrer JP; Nunez CS; Ranieri RL
    J Am Chem Soc; 1974 Jan; 96(1):320-2. PubMed ID: 4810575
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.