BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 15726203)

  • 1. AC frequency characteristics of coplanar impedance sensors as design parameters.
    Hong J; Yoon DS; Kim SK; Kim TS; Kim S; Pak EY; No K
    Lab Chip; 2005 Mar; 5(3):270-9. PubMed ID: 15726203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "AC frequency characteristics of coplanar impedance sensors as design parameters" by Jongin Hong, Dae Sung Yoon, Sung Kwan Kim, Tae Song Kim, Sanghyo Kim, Eugene Y. Pak and Kwangsoo No, Lab Chip, 2005, 5, 270.
    Linderholm P; Renaud P
    Lab Chip; 2005 Dec; 5(12):1416-7; author reply 1418. PubMed ID: 16286976
    [No Abstract]   [Full Text] [Related]  

  • 3. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors.
    Wang L; Wang H; Wang L; Mitchelson K; Yu Z; Cheng J
    Biosens Bioelectron; 2008 Sep; 24(1):14-21. PubMed ID: 18511255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric cell-substrate impedance sensing with screen printed electrode structures.
    Brischwein M; Herrmann S; Vonau W; Berthold F; Grothe H; Motrescu ER; Wolf B
    Lab Chip; 2006 Jun; 6(6):819-22. PubMed ID: 16738736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS).
    Price DT; Rahman AR; Bhansali S
    Biosens Bioelectron; 2009 Mar; 24(7):2071-6. PubMed ID: 19101134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel impedance cell for low conductive liquids: determination of bulk and interface contributions.
    Becchi M; Callegaro L; Durbiano F; D'Elia V; Strigazzi A
    Rev Sci Instrum; 2007 Nov; 78(11):113902. PubMed ID: 18052483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impedance characterization and modeling of electrodes for biomedical applications.
    Franks W; Schenker I; Schmutz P; Hierlemann A
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1295-302. PubMed ID: 16041993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applications of SPICE for modeling miniaturized biomedical sensor systems.
    Mundt CW; Nagle HT
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):149-54. PubMed ID: 10721621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interdigitated array microelectrodes based impedance biosensors for detection of bacterial cells.
    Varshney M; Li Y
    Biosens Bioelectron; 2009 Jun; 24(10):2951-60. PubMed ID: 19041235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated electrochemical sensor array for on-line monitoring of yeast fermentations.
    Krommenhoek EE; Gardeniers JG; Bomer JG; Li X; Ottens M; van Dedem GW; Van Leeuwen M; van Gulik WM; van der Wielen LA; Heijnen JJ; van den Berg AA
    Anal Chem; 2007 Aug; 79(15):5567-73. PubMed ID: 17585833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sonochemically fabricated microelectrode arrays for biosensors. Part III. AC impedimetric study of aerobic and anaerobic response of alcohol oxidase within polyaniline.
    Myler S; Collyer SD; Davis F; Gornall DD; Higson SP
    Biosens Bioelectron; 2005 Oct; 21(4):666-71. PubMed ID: 16202881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro coulter counters with platinum black electroplated electrodes for human blood cell sensing.
    Zheng S; Liu M; Tai YC
    Biomed Microdevices; 2008 Apr; 10(2):221-31. PubMed ID: 17876707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance sensing of allergen-antibody interaction on glassy carbon electrode modified by gold electrodeposition.
    Huang H; Ran P; Liu Z
    Bioelectrochemistry; 2007 May; 70(2):257-62. PubMed ID: 17113360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Labeless AC impedimetric antibody-based sensors with pgml(-1) sensitivities for point-of-care biomedical applications.
    Barton AC; Collyer SD; Davis F; Garifallou GZ; Tsekenis G; Tully E; O'Kennedy R; Gibson T; Millner PA; Higson SP
    Biosens Bioelectron; 2009 Jan; 24(5):1090-5. PubMed ID: 18653325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of capacitive field-effect sensors with a nanocrystalline-diamond film as transducer material for multi-parameter sensing.
    Abouzar MH; Poghossian A; Razavi A; Williams OA; Bijnens N; Wagner P; Schöning MJ
    Biosens Bioelectron; 2009 Jan; 24(5):1298-304. PubMed ID: 18801654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impedimetric approach for quantifying low bacteria concentrations based on the changes produced in the electrode-solution interface during the pre-attachment stage.
    Muñoz-Berbel X; Vigués N; Jenkins AT; Mas J; Muñoz FJ
    Biosens Bioelectron; 2008 May; 23(10):1540-6. PubMed ID: 18308537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtrap electrode devices for single cell trapping and impedance measurement.
    Mondal D; Roychaudhuri C; Das L; Chatterjee J
    Biomed Microdevices; 2012 Oct; 14(5):955-64. PubMed ID: 22767244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
    Mamouni J; Yang L
    Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrode polarization impedance in weak NaCl aqueous solutions.
    Mirtaheri P; Grimnes S; Martinsen OG
    IEEE Trans Biomed Eng; 2005 Dec; 52(12):2093-9. PubMed ID: 16366232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial cell electrical impedance parameter artifacts produced by a gold electrode and phase sensitive detection.
    English AE; Squire JC; Bodmer JE; Moy AB
    IEEE Trans Biomed Eng; 2007 May; 54(5):863-73. PubMed ID: 17518283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.