These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 15726926)
1. Mass and flux distributions from DNAPL zones in sandy aquifers. Guilbeault MA; Parker BL; Cherry JA Ground Water; 2005; 43(1):70-86. PubMed ID: 15726926 [TBL] [Abstract][Full Text] [Related]
2. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers. Hunkeler D; Chollet N; Pittet X; Aravena R; Cherry JA; Parker BL J Contam Hydrol; 2004 Oct; 74(1-4):265-82. PubMed ID: 15358496 [TBL] [Abstract][Full Text] [Related]
3. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone. Rivett MO; Dearden RA; Wealthall GP J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120 [TBL] [Abstract][Full Text] [Related]
4. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. Parker BL; Chapman SW; Guilbeault MA J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583 [TBL] [Abstract][Full Text] [Related]
5. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation. Page JW; Soga K; Illangasekare T J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832 [TBL] [Abstract][Full Text] [Related]
6. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. Conant B; Cherry JA; Gillham RW J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797 [TBL] [Abstract][Full Text] [Related]
7. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity. Parker BL; Cherry JA; Chapman SW J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493 [TBL] [Abstract][Full Text] [Related]
8. Accumulation of DNAPL waste in subsurface clayey lenses and layers. Ayral-Çınar D; Demond AH J Contam Hydrol; 2020 Feb; 229():103579. PubMed ID: 31818434 [TBL] [Abstract][Full Text] [Related]
9. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: dissolved-plume retardation. Rivett MO; Allen-King RM J Contam Hydrol; 2003 Oct; 66(1-2):117-46. PubMed ID: 14516944 [TBL] [Abstract][Full Text] [Related]
10. Solvent release into a sandy aquifer. 2. Estimation of DNAPL mass based on a multiple-component dissolution model. Broholm K; Feenstra S; Cherry JA Environ Sci Technol; 2005 Jan; 39(1):317-24. PubMed ID: 15667112 [TBL] [Abstract][Full Text] [Related]
11. A three-layer diffusion-cell to examine bio-enhanced dissolution of chloroethene dense non-aqueous phase liquid. Philips J; Springael D; Smolders E Chemosphere; 2011 May; 83(7):991-6. PubMed ID: 21376368 [TBL] [Abstract][Full Text] [Related]
12. Groundwater-surface water interaction and its role on TCE groundwater plume attenuation. Chapman SW; Parker BL; Cherry JA; Aravena R; Hunkeler D J Contam Hydrol; 2007 May; 91(3-4):203-32. PubMed ID: 17182152 [TBL] [Abstract][Full Text] [Related]
13. Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field. Hwang YK; Endres AL; Piggott SD; Parker BL J Contam Hydrol; 2008 Apr; 97(1-2):1-12. PubMed ID: 18258330 [TBL] [Abstract][Full Text] [Related]
14. Quantification of groundwater contamination in an urban area using integral pumping tests. Bauer S; Bayer-Raich M; Holder T; Kolesar C; Müller D; Ptak T J Contam Hydrol; 2004 Dec; 75(3-4):183-213. PubMed ID: 15610900 [TBL] [Abstract][Full Text] [Related]
15. Monitoring well utility in a heterogeneous DNAPL source zone area: Insights from proximal multilevel sampler wells and sampling capture-zone modelling. McMillan LA; Rivett MO; Wealthall GP; Zeeb P; Dumble P J Contam Hydrol; 2018 Mar; 210():15-30. PubMed ID: 29475775 [TBL] [Abstract][Full Text] [Related]
16. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones. Yang L; Wang X; Mendoza-Sanchez I; Abriola LM J Contam Hydrol; 2018 Apr; 211():1-14. PubMed ID: 29525038 [TBL] [Abstract][Full Text] [Related]
17. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation. Pierce AA; Chapman SW; Zimmerman LK; Hurley JC; Aravena R; Cherry JA; Parker BL J Contam Hydrol; 2018 May; 212():96-114. PubMed ID: 29530334 [TBL] [Abstract][Full Text] [Related]
18. [Solute transport modeling application in groundwater organic contaminant source identification]. Wang SF; Wang LY; Wang XH; Lin P; Liu JR; Xin BD; He GP Huan Jing Ke Xue; 2012 Mar; 33(3):760-70. PubMed ID: 22624366 [TBL] [Abstract][Full Text] [Related]
19. Use of pretreatment zones and zero-valent iron for the remediation of chloroalkenes in an oxic aquifer. Kenneke JF; McCutcheon SC Environ Sci Technol; 2003 Jun; 37(12):2829-35. PubMed ID: 12854726 [TBL] [Abstract][Full Text] [Related]
20. Implications of alcohol partitioning behavior for in situ density modification of entrapped dense nonaqueous phase liquids. Kibbey TC; Ramsburg CA; Pennell KD; Hayes KF Environ Sci Technol; 2002 Jan; 36(1):104-11. PubMed ID: 11817369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]