BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15726977)

  • 1. Levels and enterotoxigenicity of Clostridium perfringens in pozole, tamales, and birria.
    Navarro-Hidalgo V; Cabrera-Díaz E; Zepeda H; Mota de la Garza L; Castillo A; Torres-Vitela R
    J Food Prot; 2005 Feb; 68(2):331-5. PubMed ID: 15726977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the microbial quality of Tajik sambusa and control of Clostridium perfringens germination and outgrowth by buffered sodium citrate and potassium lactate.
    Yarbaeva SN; Velugoti PR; Thippareddi H; Albrecht JA
    J Food Prot; 2008 Jan; 71(1):77-82. PubMed ID: 18236666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior and Inactivation of Enterotoxin-Positive Clostridium perfringens in Pork Picadillo and Tamales Filled with Pork Picadillo under Different Cooking, Storage, and Reheating Conditions.
    Villarruel-López A; Ruíz-Quezada SL; Castro-Rosas J; Gomez-Aldapa CA; Olea-Rodríguez MA; Nuño K; Navarro-Hidalgo V; Torres-Vitela MR
    J Food Prot; 2016 May; 79(5):741-7. PubMed ID: 27296420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Clostridium perfringens spore germination and outgrowth by lemon juice and vinegar product in reduced NaCl roast beef.
    Li L; Valenzuela-Martinez C; Redondo M; Juneja VK; Burson DE; Thippareddi H
    J Food Sci; 2012 Nov; 77(11):M598-603. PubMed ID: 23163907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of cooking, cooling, and subsequent refrigeration on the growth or survival of Clostridium perfringens in cooked meat and poultry products.
    Kalinowski RM; Tompkin RB; Bodnaruk PW; Pruett WP
    J Food Prot; 2003 Jul; 66(7):1227-32. PubMed ID: 12870757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival and germination of Clostridium perfringens spores during heating and cooling of ground pork.
    Márquez-González M; Cabrera-Díaz E; Hardin MD; Harris KB; Lucia LM; Castillo A
    J Food Prot; 2012 Apr; 75(4):682-9. PubMed ID: 22488055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of bacon processing conditions to verify control of Clostridium perfringens and Staphylococcus aureus.
    Taormina PJ; Bartholomew GW
    J Food Prot; 2005 Sep; 68(9):1831-9. PubMed ID: 16161681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic computer simulation of Clostridium perfringens growth in cooked ground beef.
    Huang L
    Int J Food Microbiol; 2003 Nov; 87(3):217-27. PubMed ID: 14527794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth potential of Clostridium perfringens from spores in acidified beef, pork, and poultry products during chilling.
    Juneja VK; Baker DA; Thippareddi H; Snyder OP; Mohr TB
    J Food Prot; 2013 Jan; 76(1):65-71. PubMed ID: 23317858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of NaCl content and cooling rate on outgrowth of Clostridium perfringens spores in cooked ham and beef.
    Zaika LL
    J Food Prot; 2003 Sep; 66(9):1599-603. PubMed ID: 14503712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk assessment for Clostridium perfringens in ready-to-eat and partially cooked meat and poultry products.
    Golden NJ; Crouch EA; Latimer H; Kadry AR; Kause J
    J Food Prot; 2009 Jul; 72(7):1376-84. PubMed ID: 19681258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Clostridium perfringens spores by green tea leaf extracts during cooling of cooked ground beef, chicken, and pork.
    Juneja VK; Bari ML; Inatsu Y; Kawamoto S; Friedman M
    J Food Prot; 2007 Jun; 70(6):1429-33. PubMed ID: 17612073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of enterotoxigenic Clostridium perfringens in spices used in Mexico by dot blotting using a DNA probe.
    Rodríguez-Romo LA; Heredia NL; Labbé RG; García-Alvarado JS
    J Food Prot; 1998 Feb; 61(2):201-4. PubMed ID: 9708282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling growth of Clostridium perfringens in pea soup during cooling.
    de Jong AE; Beumer RR; Zwietering MH
    Risk Anal; 2005 Feb; 25(1):61-73. PubMed ID: 15787757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevalence of some bacteria yeasts and molds in meat foods in San Luis, Argentina.
    Stagnitta PV; Micalizzi B; de Guzmán AM
    Cent Eur J Public Health; 2006 Sep; 14(3):141-4. PubMed ID: 17152228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clostridium perfringens Contamination in Retail Meat and Meat-Based Products in Bursa, Turkey.
    Yibar A; Cetin E; Ata Z; Erkose E; Tayar M
    Foodborne Pathog Dis; 2018 Apr; 15(4):239-245. PubMed ID: 29315008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Clostridium perfringens in cooked ground beef by carvacrol, cinnamaldehyde, thymol, or oregano oil during chilling.
    Juneja VK; Thippareddi H; Friedman M
    J Food Prot; 2006 Jul; 69(7):1546-51. PubMed ID: 16865884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a Clostridium perfringens predictive model, developed under isothermal conditions in broth, to predict growth in ground beef during cooling.
    Smith S; Schaffner DW
    Appl Environ Microbiol; 2004 May; 70(5):2728-33. PubMed ID: 15128525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of several methodological factors on the growth of Clostridium perfringens in cooling rate challenge studies.
    Smith S; Juneja V; Schaffner DW
    J Food Prot; 2004 Jun; 67(6):1128-32. PubMed ID: 15222538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incidence of Clostridium perfringens in commercially produced cured raw meat product mixtures and behavior in cooked products during chilling and refrigerated storage.
    Taormina PJ; Bartholomew GW; Dorsa WJ
    J Food Prot; 2003 Jan; 66(1):72-81. PubMed ID: 12540184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.