These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15727151)

  • 21. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.
    Kim S; Bae W; Hwang J; Park J
    Water Sci Technol; 2010; 62(9):1991-7. PubMed ID: 21045323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.
    Kim S; Hwang J; Chung J; Bae W
    J Hazard Mater; 2014 Jun; 275():99-106. PubMed ID: 24857894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate.
    Landa AS; Sipkema EM; Weijma J; Beenackers AA; Dolfing J; Janssen DB
    Appl Environ Microbiol; 1994 Sep; 60(9):3368-74. PubMed ID: 7524444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isopropylbenzene (cumene)--a new substrate for the isolation of trichloroethene-degrading bacteria.
    Dabrock B; Riedel J; Bertram J; Gottschalk G
    Arch Microbiol; 1992; 158(1):9-13. PubMed ID: 1444717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional and structural analyses of trichloroethylene-degrading bacterial communities under different phenol-feeding conditions: laboratory experiments.
    Futamata H; Harayama S; Hiraishi A; Watanabe K
    Appl Microbiol Biotechnol; 2003 Jan; 60(5):594-600. PubMed ID: 12536262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation.
    Kao CM; Chen SC; Su MC
    Chemosphere; 2001 Aug; 44(5):925-34. PubMed ID: 11513425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cytotoxicity associated with trichloroethylene oxidation in Burkholderia cepacia G4.
    Yeager CM; Bottomley PJ; Arp DJ
    Appl Environ Microbiol; 2001 May; 67(5):2107-15. PubMed ID: 11319088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene.
    Han YL; Kuo MC; Tseng IC; Lu CJ
    J Hazard Mater; 2007 Sep; 148(3):583-91. PubMed ID: 17412499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.
    Kang JW; Doty SL
    Can J Microbiol; 2014 Jul; 60(7):487-90. PubMed ID: 24992516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway.
    Nelson MJ; Montgomery SO; Mahaffey WR; Pritchard PH
    Appl Environ Microbiol; 1987 May; 53(5):949-54. PubMed ID: 3606099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively.
    Yee DC; Maynard JA; Wood TK
    Appl Environ Microbiol; 1998 Jan; 64(1):112-8. PubMed ID: 9435067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates.
    Yeager CM; Arthur KM; Bottomley PJ; Arp DJ
    Biodegradation; 2004 Feb; 15(1):19-28. PubMed ID: 14971854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.
    Wang S; Yang Q; Bai Z; Wang S; Wang Y; Nowak KM
    Environ Technol; 2015; 36(1-4):115-23. PubMed ID: 25409590
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the aerobic biodegradation of trichloroethylene via response surface methodology.
    Cutright TJ; Meza L
    Environ Int; 2007 Apr; 33(3):338-45. PubMed ID: 17188356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Composition of toluene-degrading microbial communities from soil at different concentrations of toluene.
    Hubert C; Shen Y; Voordouw G
    Appl Environ Microbiol; 1999 Jul; 65(7):3064-70. PubMed ID: 10388704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recruitment and expression of toluene/trichloroethylene biodegradation genes in bacteria native to deep-subsurface sediments.
    Romine MF; Brockman FJ
    Appl Environ Microbiol; 1996 Jul; 62(7):2647-50. PubMed ID: 8779603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of gaseous trichloroethylene (TCE) in a composite membrane biofilm reactor.
    Kumar A; Vercruyssen A; Dewulf J; Lens P; Van Langenhove H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(7):1046-52. PubMed ID: 22486674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils.
    Suttinun O; Müller R; Luepromchai E
    Biodegradation; 2009 Apr; 20(2):281-91. PubMed ID: 18846429
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unique kinetic properties of phenol-degrading variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture.
    Futamata H; Nagano Y; Watanabe K; Hiraishi A
    Appl Environ Microbiol; 2005 Feb; 71(2):904-11. PubMed ID: 15691947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aerobic biodegradation of trichloroethylene using a consortium of five bacterial strains.
    Meza L; Cutright TJ; El-Zahab B; Wang P
    Biotechnol Lett; 2003 Nov; 25(22):1925-32. PubMed ID: 14719828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.