BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15728343)

  • 41. Contrasting interactions between ethylene and abscisic acid in Rumex species differing in submergence tolerance.
    Benschop JJ; Jackson MB; Gühl K; Vreeburg RA; Croker SJ; Peeters AJ; Voesenek LA
    Plant J; 2005 Dec; 44(5):756-68. PubMed ID: 16297068
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects.
    Yang C; Lu X; Ma B; Chen SY; Zhang JS
    Mol Plant; 2015 Apr; 8(4):495-505. PubMed ID: 25732590
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis.
    Ge XM; Cai HL; Lei X; Zhou X; Yue M; He JM
    Plant J; 2015 Apr; 82(1):138-50. PubMed ID: 25704455
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Short-term growth responses to ethylene in Arabidopsis seedlings are EIN3/EIL1 independent.
    Binder BM; Mortimore LA; Stepanova AN; Ecker JR; Bleecker AB
    Plant Physiol; 2004 Oct; 136(2):2921-7. PubMed ID: 15466219
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis.
    Luo X; Chen Z; Gao J; Gong Z
    Plant J; 2014 Jul; 79(1):44-55. PubMed ID: 24738778
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis.
    Jing HC; Schippers JH; Hille J; Dijkwel PP
    J Exp Bot; 2005 Nov; 56(421):2915-23. PubMed ID: 16172137
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis.
    Chen MK; Hsu WH; Lee PF; Thiruvengadam M; Chen HI; Yang CH
    Plant J; 2011 Oct; 68(1):168-85. PubMed ID: 21689171
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The ethylene gas signal transduction pathway: a molecular perspective.
    Johnson PR; Ecker JR
    Annu Rev Genet; 1998; 32():227-54. PubMed ID: 9928480
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New perspectives in flooding research: the use of shade avoidance and Arabidopsis thaliana.
    Pierik R; Millenaar FF; Peeters AJ; Voesenek LA
    Ann Bot; 2005 Sep; 96(4):533-40. PubMed ID: 16027134
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Auxin perception and polar auxin transport are not always a prerequisite for differential growth.
    van Zanten M; Millenaar FF; Cox MC; Pierik R; Voesenek LA; Peeters AJ
    Plant Signal Behav; 2009 Sep; 4(9):899-901. PubMed ID: 19847122
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Growth-mediated stress escape: convergence of signal transduction pathways activated upon exposure to two different environmental stresses.
    Pierik R; De Wit M; Voesenek LA
    New Phytol; 2011 Jan; 189(1):122-34. PubMed ID: 20854397
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ethylene emission and responsiveness to applied ethylene vary among Poa species that inherently differ in leaf elongation rates.
    Fiorani F; Bögemann GM; Visser EJ; Lambers H; Voesenek LA
    Plant Physiol; 2002 Jul; 129(3):1382-90. PubMed ID: 12114591
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Accession-dependent action potentials in Arabidopsis.
    Favre P; Greppin H; Degli Agosti R
    J Plant Physiol; 2011 May; 168(7):653-60. PubMed ID: 21112666
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plant neighbor detection through touching leaf tips precedes phytochrome signals.
    de Wit M; Kegge W; Evers JB; Vergeer-van Eijk MH; Gankema P; Voesenek LA; Pierik R
    Proc Natl Acad Sci U S A; 2012 Sep; 109(36):14705-10. PubMed ID: 22908260
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential responses of Arabidopsis thaliana accessions to atmospheric nitrogen dioxide at ambient concentrations.
    Takahashi M; Morikawa H
    Plant Signal Behav; 2014; 9(4):e28563. PubMed ID: 24675109
    [TBL] [Abstract][Full Text] [Related]  

  • 56. AtDAT1 Is a Key Enzyme of D-Amino Acid Stimulated Ethylene Production in
    Suarez J; Hener C; Lehnhardt VA; Hummel S; Stahl M; Kolukisaoglu Ü
    Front Plant Sci; 2019; 10():1609. PubMed ID: 31921255
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanodetection of neighbor plants elicits adaptive leaf movements through calcium dynamics.
    Pantazopoulou CK; Buti S; Nguyen CT; Oskam L; Weits DA; Farmer EE; Kajala K; Pierik R
    Nat Commun; 2023 Sep; 14(1):5827. PubMed ID: 37730832
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Seedlings' Strategy to Overcome a Soil Barrier.
    Zhu Q; Benková E
    Trends Plant Sci; 2016 Oct; 21(10):809-811. PubMed ID: 27553704
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Petiole hyponasty: an ethylene-driven, adaptive response to changes in the environment.
    Polko JK; Voesenek LA; Peeters AJ; Pierik R
    AoB Plants; 2011; 2011():plr031. PubMed ID: 22476501
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ethylene Promotes Elongation Growth and Auxin Promotes Radial Growth in Ranunculus sceleratus Petioles.
    Smulders MJ; Horton RF
    Plant Physiol; 1991 Jul; 96(3):806-11. PubMed ID: 16668257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.