These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15728343)

  • 61. Ethylene Sensitivity and Response Sensor Expression in Petioles of Rumex Species at Low O2 and High CO2 Concentrations.
    Voesenek L; Vriezen WH; Smekens M; Huitink F; Bogemann GM; Blom C
    Plant Physiol; 1997 Aug; 114(4):1501-1509. PubMed ID: 12223784
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Kinetics of Maize Leaf Elongation : III. Silver Thiosulfate Increases the Yield Threshold of Salt-Stressed Plants, but Ethylene Is Not Involved.
    Cramer GR
    Plant Physiol; 1992 Oct; 100(2):1044-7. PubMed ID: 16653015
    [TBL] [Abstract][Full Text] [Related]  

  • 63. ATML1 Regulates the Differentiation of ER Body-containing Large Pavement Cells in Rosette Leaves of Brassicaceae Plants.
    Wilkens A; Czerniawski P; Bednarek P; Libik-Konieczny M; Yamada K
    Plant Cell Physiol; 2024 Apr; ():. PubMed ID: 38590036
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The role of petioles in light acquisition by Hydrocotyle vulgaris L. in a vertical light gradient.
    Leeflang L; During HJ; Werger MJ
    Oecologia; 1998 Nov; 117(1-2):235-238. PubMed ID: 28308492
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Three-dimensional quantification of twisting in the Arabidopsis petiole.
    Otsuka Y; Tsukaya H
    J Plant Res; 2021 Jul; 134(4):811-819. PubMed ID: 33839995
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ethylene production and petiole growth in rumex plants induced by soil waterlogging: the application of a continuous flow system and a laser driven intracavity photoacoustic detection system.
    Voesenek LA; Harren FJ; Bögemann GM; Blom CW; Reuss J
    Plant Physiol; 1990 Nov; 94(3):1071-7. PubMed ID: 16667798
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ethylene-induced growth and proton excretion in the aquatic plant Nymphoides peltata.
    Malone M; Ridge I
    Planta; 1983 Feb; 157(1):71-3. PubMed ID: 24263946
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Accelerated abscission of coleus petioles by placing plants in a horizontal position.
    Abeles FB; Gahagan HE
    Life Sci; 1968 Jun; 7(12):653-5. PubMed ID: 5672666
    [No Abstract]   [Full Text] [Related]  

  • 69. Temperature Sensitivity of the Latent Phase in Ethylene-induced Elongation.
    Palmer J
    Plant Physiol; 1975 Mar; 55(3):581-2. PubMed ID: 16659127
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Production of ethylene by excised segments of plant tissue prior to the effect of wounding.
    Jackson MB; Campbell DJ
    Planta; 1976 Jan; 129(3):273-4. PubMed ID: 24430970
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Corrigendum.
    New Phytol; 2012 Mar; 193(4):1098. PubMed ID: 33874359
    [No Abstract]   [Full Text] [Related]  

  • 72. An effect of water stress on ethylene production by intact cotton petioles.
    McMichael BL; Jordan WR; Powell RD
    Plant Physiol; 1972 Apr; 49(4):658-60. PubMed ID: 16658022
    [No Abstract]   [Full Text] [Related]  

  • 73. Light-Dependent High Ambient Temperature-Induced Senescence Assay Using Whole Seedlings.
    Kim C; Choi G
    Methods Mol Biol; 2024; 2795():25-35. PubMed ID: 38594524
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Shade-Induced Leaf Senescence in Plants.
    Li Z; Zhao T; Liu J; Li H; Liu B
    Plants (Basel); 2023 Apr; 12(7):. PubMed ID: 37050176
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Dissecting the Molecular Regulation of Natural Variation in Growth and Senescence of Two
    Wang F; Sun Z; Zhu M; Zhang Q; Sun Y; Sun W; Wu C; Li T; Zhao Y; Ma C; Zhang H; Zhao Y; Wang Z
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682805
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The Oxidative Paradox in Low Oxygen Stress in Plants.
    Pucciariello C; Perata P
    Antioxidants (Basel); 2021 Feb; 10(2):. PubMed ID: 33672303
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Uncharted routes: exploring the relevance of auxin movement via plasmodesmata.
    Paterlini A
    Biol Open; 2020 Nov; 9(11):. PubMed ID: 33184092
    [TBL] [Abstract][Full Text] [Related]  

  • 78. All roads lead to growth: imaging-based and biochemical methods to measure plant growth.
    Olas JJ; Fichtner F; Apelt F
    J Exp Bot; 2020 Jan; 71(1):11-21. PubMed ID: 31613967
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in Arabidopsis.
    Eysholdt-Derzsó E; Sauter M
    Plant Biol (Stuttg); 2019 Jan; 21 Suppl 1(Suppl Suppl 1):103-108. PubMed ID: 29996004
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Far-Red Light Detection in the Shoot Regulates Lateral Root Development through the HY5 Transcription Factor.
    van Gelderen K; Kang C; Paalman R; Keuskamp D; Hayes S; Pierik R
    Plant Cell; 2018 Jan; 30(1):101-116. PubMed ID: 29321188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.