BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 15728380)

  • 1. Dissection of synaptic excitability phenotypes by using a dominant-negative Shaker K+ channel subunit.
    Mosca TJ; Carrillo RA; White BH; Keshishian H
    Proc Natl Acad Sci U S A; 2005 Mar; 102(9):3477-82. PubMed ID: 15728380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre- and post-synaptic mechanisms of synaptic strength homeostasis revealed by slowpoke and shaker K+ channel mutations in Drosophila.
    Lee J; Ueda A; Wu CF
    Neuroscience; 2008 Jul; 154(4):1283-96. PubMed ID: 18539401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring membrane excitability in Drosophila expressing modified shaker constructs.
    Olsen DP; Keshishian H
    Cold Spring Harb Protoc; 2012 Feb; 2012(2):226-30. PubMed ID: 22301649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct frequency-dependent regulation of nerve terminal excitability and synaptic transmission by IA and IK potassium channels revealed by Drosophila Shaker and Shab mutations.
    Ueda A; Wu CF
    J Neurosci; 2006 Jun; 26(23):6238-48. PubMed ID: 16763031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the frequency response of Shaker potassium channels by the quiver peptide suggesting a novel extracellular interaction mechanism.
    Wang JW; Wu CF
    J Neurogenet; 2010 Jul; 24(2):67-74. PubMed ID: 20429677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Essential role for dlg in synaptic clustering of Shaker K+ channels in vivo.
    Tejedor FJ; Bokhari A; Rogero O; Gorczyca M; Zhang J; Kim E; Sheng M; Budnik V
    J Neurosci; 1997 Jan; 17(1):152-9. PubMed ID: 8987744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxiliary Hyperkinetic beta subunit of K+ channels: regulation of firing properties and K+ currents in Drosophila neurons.
    Yao WD; Wu CF
    J Neurophysiol; 1999 May; 81(5):2472-84. PubMed ID: 10322082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nerve terminal excitability and neuromuscular transmission in T(X;Y)V7 and Shaker mutants of Drosophila melanogaster.
    Mallart A; Angaut-Petit D; Bourret-Poulain C; Ferrús A
    J Neurogenet; 1991 Feb; 7(2-3):75-84. PubMed ID: 1851515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sub-cellular Ca2+ dynamics affected by voltage- and Ca2+-gated K+ channels: Regulation of the soma-growth cone disparity and the quiescent state in Drosophila neurons.
    Berke BA; Lee J; Peng IF; Wu CF
    Neuroscience; 2006 Oct; 142(3):629-44. PubMed ID: 16919393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted attenuation of electrical activity in Drosophila using a genetically modified K(+) channel.
    White BH; Osterwalder TP; Yoon KS; Joiner WJ; Whim MD; Kaczmarek LK; Keshishian H
    Neuron; 2001 Sep; 31(5):699-711. PubMed ID: 11567611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium and potassium currents influence Wallerian degeneration of injured Drosophila axons.
    Mishra B; Carson R; Hume RI; Collins CA
    J Neurosci; 2013 Nov; 33(48):18728-39. PubMed ID: 24285879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered synaptic transmission in Drosophila hyperkinetic mutants.
    Stern M; Ganetzky B
    J Neurogenet; 1989 Aug; 5(4):215-28. PubMed ID: 2553904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irregular activity in the giant neurons from Shaker mutants suggests that the Shaker locus may encode non-A-type K+ channel subunits in Drosophila.
    Saito M; Zhao ML; Wu CF
    Ann N Y Acad Sci; 1993 Dec; 707():392-5. PubMed ID: 9137577
    [No Abstract]   [Full Text] [Related]  

  • 14. Tissue-specific alternative splicing of hybrid Shaker/lacZ genes correlates with kinetic differences in Shaker K+ currents in vivo.
    Mottes JR; Iverson LE
    Neuron; 1995 Mar; 14(3):613-23. PubMed ID: 7695908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo functional role of the Drosophila hyperkinetic beta subunit in gating and inactivation of Shaker K+ channels.
    Wang JW; Wu CF
    Biophys J; 1996 Dec; 71(6):3167-76. PubMed ID: 8968587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic clustering of Fascilin II and Shaker: essential targeting sequences and role of Dlg.
    Zito K; Fetter RD; Goodman CS; Isacoff EY
    Neuron; 1997 Nov; 19(5):1007-16. PubMed ID: 9390515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo properties of the Drosophila inebriated-encoded neurotransmitter transporter.
    Huang Y; Stern M
    J Neurosci; 2002 Mar; 22(5):1698-708. PubMed ID: 11880499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of Shaker K+ channels to the information capacity of Drosophila photoreceptors.
    Niven JE; Vähäsöyrinki M; Kauranen M; Hardie RC; Juusola M; Weckström M
    Nature; 2003 Feb; 421(6923):630-4. PubMed ID: 12571596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of an Aplysia shaker K+ channel gene modifies the electrical properties and synaptic efficacy of identified Aplysia neurons.
    Kaang BK; Pfaffinger PJ; Grant SG; Kandel ER; Furukawa Y
    Proc Natl Acad Sci U S A; 1992 Feb; 89(3):1133-7. PubMed ID: 1310540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential contributions of Shaker and Shab K+ currents to neuronal firing patterns in Drosophila.
    Peng IF; Wu CF
    J Neurophysiol; 2007 Jan; 97(1):780-94. PubMed ID: 17079336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.