These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 15728849)

  • 61. Activity of the Lateral Hypothalamus during Genetically Determined Absence Seizures.
    Sere P; Zsigri N; Raffai T; Furdan S; Győri F; Crunelli V; Lőrincz ML
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502374
    [TBL] [Abstract][Full Text] [Related]  

  • 62. EEG and evoked potential recording from the subthalamic nucleus for deep brain stimulation of intractable epilepsy.
    Dinner DS; Neme S; Nair D; Montgomery EB; Baker KB; Rezai A; Lüders HO
    Clin Neurophysiol; 2002 Sep; 113(9):1391-402. PubMed ID: 12169320
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network.
    Bevan MD; Magill PJ; Terman D; Bolam JP; Wilson CJ
    Trends Neurosci; 2002 Oct; 25(10):525-31. PubMed ID: 12220881
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Elevated thalamic low-voltage-activated currents precede the onset of absence epilepsy in the SNAP25-deficient mouse mutant coloboma.
    Zhang Y; Vilaythong AP; Yoshor D; Noebels JL
    J Neurosci; 2004 Jun; 24(22):5239-48. PubMed ID: 15175394
    [TBL] [Abstract][Full Text] [Related]  

  • 65. T-type Ca2+ channels in absence epilepsy.
    Cheong E; Shin HS
    Pflugers Arch; 2014 Apr; 466(4):719-34. PubMed ID: 24519464
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Neuronal rhythmicity and cortical arousal in a mouse model of absence epilepsy.
    Khan W; Chopra S; Zheng X; Liu S; Paszkowski P; Valcarce-Aspegren M; Sieu LA; Mcgill S; Mccafferty C; Blumenfeld H
    Exp Neurol; 2024 Nov; 381():114925. PubMed ID: 39151596
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Thalamocortical neurons display suppressed burst-firing due to an enhanced Ih current in a genetic model of absence epilepsy.
    Cain SM; Tyson JR; Jones KL; Snutch TP
    Pflugers Arch; 2015 Jun; 467(6):1367-82. PubMed ID: 24953239
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Critical Roles of the Direct GABAergic Pallido-cortical Pathway in Controlling Absence Seizures.
    Chen M; Guo D; Li M; Ma T; Wu S; Ma J; Cui Y; Xia Y; Xu P; Yao D
    PLoS Comput Biol; 2015 Oct; 11(10):e1004539. PubMed ID: 26496656
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Electrophysiological and pharmacological characteristics of two types of spike-wave discharges in WAG/Rij rats.
    Midzianovskaia IS; Kuznetsova GD; Coenen AM; Spiridonov AM; van Luijtelaar EL
    Brain Res; 2001 Aug; 911(1):62-70. PubMed ID: 11489445
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Relationship between subthalamic nucleus neuronal activity and electrocorticogram is altered in the R6/2 mouse model of Huntington's disease.
    Callahan JW; Abercrombie ED
    J Physiol; 2015 Aug; 593(16):3727-38. PubMed ID: 25952461
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Evidence for the involvement of the pallidum in the modulation of seizures in a genetic model of absence epilepsy in the rat.
    Deransart C; Riban V; Lê BT; Hechler V; Marescaux C; Depaulis A
    Neurosci Lett; 1999 Apr; 265(2):131-4. PubMed ID: 10327186
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Detection of spike and wave discharges in the cortical EEG of genetic absence epilepsy rats from Strasbourg.
    Van Hese P; Martens JP; Boon P; Dedeurwaerdere S; Lemahieu I; Van de Walle R
    Phys Med Biol; 2003 Jun; 48(12):1685-700. PubMed ID: 12870577
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Thalamo-cortical mechanisms of sleep spindles and spike-wave discharges in rat model of absence epilepsy (a review).
    Sitnikova E
    Epilepsy Res; 2010 Mar; 89(1):17-26. PubMed ID: 19828296
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Simultaneous EEG, fMRI, and behavior in typical childhood absence seizures.
    Berman R; Negishi M; Vestal M; Spann M; Chung MH; Bai X; Purcaro M; Motelow JE; Danielson N; Dix-Cooper L; Enev M; Novotny EJ; Constable RT; Blumenfeld H
    Epilepsia; 2010 Oct; 51(10):2011-22. PubMed ID: 20608963
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Parkinson's disease uncovers an underlying sensitivity of subthalamic nucleus neurons to beta-frequency cortical input in vivo.
    Baaske MK; Kormann E; Holt AB; Gulberti A; McNamara CG; Pötter-Nerger M; Westphal M; Engel AK; Hamel W; Brown P; Moll CKE; Sharott A
    Neurobiol Dis; 2020 Dec; 146():105119. PubMed ID: 32991998
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Uncoupling the roles of firing rates and spike bursts in shaping the STN-GPe beta band oscillations.
    Bahuguna J; Sahasranamam A; Kumar A
    PLoS Comput Biol; 2020 Mar; 16(3):e1007748. PubMed ID: 32226014
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Genetic Absence Epilepsy in Rats from Strasbourg (GAERS).
    Marescaux C; Vergnes M
    Ital J Neurol Sci; 1995; 16(1-2):113-8. PubMed ID: 7642344
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway.
    Nambu A; Tokuno H; Takada M
    Neurosci Res; 2002 Jun; 43(2):111-7. PubMed ID: 12067746
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Generalized epilepsy with bilateral synchronous spike and wave discharge. New findings concerning its physiological mechanisms.
    Gloor P
    Electroencephalogr Clin Neurophysiol Suppl; 1978; (34):245-9. PubMed ID: 108073
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nucleus-specific abnormalities of GABAergic synaptic transmission in a genetic model of absence seizures.
    Bessaïh T; Bourgeais L; Badiu CI; Carter DA; Toth TI; Ruano D; Lambolez B; Crunelli V; Leresche N
    J Neurophysiol; 2006 Dec; 96(6):3074-81. PubMed ID: 16971676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.