These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 15728931)
1. Efg1 involved in drug resistance by regulating the expression of ERG3 in Candida albicans. Lo HJ; Wang JS; Lin CY; Chen CG; Hsiao TY; Hsu CT; Su CL; Fann MJ; Ching YT; Yang YL Antimicrob Agents Chemother; 2005 Mar; 49(3):1213-5. PubMed ID: 15728931 [TBL] [Abstract][Full Text] [Related]
2. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans. Watamoto T; Samaranayake LP; Jayatilake JA; Egusa H; Yatani H; Seneviratne CJ Int J Antimicrob Agents; 2009 Oct; 34(4):333-9. PubMed ID: 19376687 [TBL] [Abstract][Full Text] [Related]
3. Cph1p negatively regulates MDR1 involved in drug resistance in Candida albicans. Lo HJ; Tseng KY; Kao YY; Tsao MY; Lo HL; Yang YL Int J Antimicrob Agents; 2015 Jun; 45(6):617-21. PubMed ID: 25802233 [TBL] [Abstract][Full Text] [Related]
4. Non-lethal Candida albicans cph1/cph1 efg1/efg1 mutant partially protects mice from systemic infections by lethal wild-type cells. Yang YL; Wang CW; Chen CT; Wang MH; Hsiao CF; Lo HJ Mycol Res; 2009 Mar; 113(Pt 3):388-90. PubMed ID: 19111931 [TBL] [Abstract][Full Text] [Related]
5. Non-lethal Candida albicans cph1/cph1 efg1/efg1 transcription factor mutant establishing restricted zone of infection in a mouse model of systemic infection. Chen CG; Yang YL; Cheng HH; Su CL; Huang SF; Chen CT; Liu YT; Su IJ; Lo HJ Int J Immunopathol Pharmacol; 2006; 19(3):561-5. PubMed ID: 17026841 [TBL] [Abstract][Full Text] [Related]
6. Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species. Chamilos G; Lionakis MS; Lewis RE; Lopez-Ribot JL; Saville SP; Albert ND; Halder G; Kontoyiannis DP J Infect Dis; 2006 Apr; 193(7):1014-22. PubMed ID: 16518764 [TBL] [Abstract][Full Text] [Related]
7. Deletion of EFG1 promotes Candida albicans opaque formation responding to pH via Rim101. Nie X; Liu X; Wang H; Chen J Acta Biochim Biophys Sin (Shanghai); 2010 Oct; 42(10):735-44. PubMed ID: 20870932 [TBL] [Abstract][Full Text] [Related]
8. Reduced expression of the hyphal-independent Candida albicans proteinase genes SAP1 and SAP3 in the efg1 mutant is associated with attenuated virulence during infection of oral epithelium. Korting HC; Hube B; Oberbauer S; Januschke E; Hamm G; Albrecht A; Borelli C; Schaller M J Med Microbiol; 2003 Aug; 52(Pt 8):623-632. PubMed ID: 12867554 [TBL] [Abstract][Full Text] [Related]
9. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. Stoldt VR; Sonneborn A; Leuker CE; Ernst JF EMBO J; 1997 Apr; 16(8):1982-91. PubMed ID: 9155024 [TBL] [Abstract][Full Text] [Related]
10. In vitro reconstructed human epithelia reveal contributions of Candida albicans EFG1 and CPH1 to adhesion and invasion. Dieterich C; Schandar M; Noll M; Johannes FJ; Brunner H; Graeve T; Rupp S Microbiology (Reading); 2002 Feb; 148(Pt 2):497-506. PubMed ID: 11832513 [TBL] [Abstract][Full Text] [Related]
11. Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicans. Prasad T; Hameed S; Manoharlal R; Biswas S; Mukhopadhyay CK; Goswami SK; Prasad R FEMS Yeast Res; 2010 Aug; 10(5):587-96. PubMed ID: 20491944 [TBL] [Abstract][Full Text] [Related]
12. Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes. Pierce JV; Dignard D; Whiteway M; Kumamoto CA Eukaryot Cell; 2013 Jan; 12(1):37-49. PubMed ID: 23125349 [TBL] [Abstract][Full Text] [Related]
13. Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium. Jayatilake JA; Samaranayake YH; Cheung LK; Samaranayake LP J Oral Pathol Med; 2006 Sep; 35(8):484-91. PubMed ID: 16918600 [TBL] [Abstract][Full Text] [Related]
14. Inactivation of sterol Delta5,6-desaturase attenuates virulence in Candida albicans. Chau AS; Gurnani M; Hawkinson R; Laverdiere M; Cacciapuoti A; McNicholas PM Antimicrob Agents Chemother; 2005 Sep; 49(9):3646-51. PubMed ID: 16127034 [TBL] [Abstract][Full Text] [Related]
15. DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. Lane S; Birse C; Zhou S; Matson R; Liu H J Biol Chem; 2001 Dec; 276(52):48988-96. PubMed ID: 11595734 [TBL] [Abstract][Full Text] [Related]
16. Rep1p negatively regulating MDR1 efflux pump involved in drug resistance in Candida albicans. Chen CG; Yang YL; Tseng KY; Shih HI; Liou CH; Lin CC; Lo HJ Fungal Genet Biol; 2009 Sep; 46(9):714-20. PubMed ID: 19527793 [TBL] [Abstract][Full Text] [Related]
17. Serum repressing efflux pump CDR1 in Candida albicans. Yang YL; Lin YH; Tsao MY; Chen CG; Shih HI; Fan JC; Wang JS; Lo HJ BMC Mol Biol; 2006 Jul; 7():22. PubMed ID: 16839415 [TBL] [Abstract][Full Text] [Related]
18. The role of secreted aspartyl proteinases in Candida albicans keratitis. Jackson BE; Wilhelmus KR; Hube B Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3559-65. PubMed ID: 17652724 [TBL] [Abstract][Full Text] [Related]
19. Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans, a commensal and a pathogen. Liu H Int J Med Microbiol; 2002 Oct; 292(5-6):299-311. PubMed ID: 12452278 [TBL] [Abstract][Full Text] [Related]
20. Amino acid substitutions in the Candida albicans sterol Δ5,6-desaturase (Erg3p) confer azole resistance: characterization of two novel mutants with impaired virulence. Morio F; Pagniez F; Lacroix C; Miegeville M; Le Pape P J Antimicrob Chemother; 2012 Sep; 67(9):2131-8. PubMed ID: 22678731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]