BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1572908)

  • 21. Normal human urothelial cells in vitro: proliferation and induction of stratification.
    Southgate J; Hutton KA; Thomas DF; Trejdosiewicz LK
    Lab Invest; 1994 Oct; 71(4):583-94. PubMed ID: 7967513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Transforming growth factors beta 1 and 2 inhibit proliferation of limbus and corneal epithelium].
    Kruse FE; Tseng SC
    Ophthalmologe; 1994 Oct; 91(5):617-23. PubMed ID: 7812093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transplantation of human limbal cells cultivated on amniotic membrane for reconstruction of rat corneal epithelium after alkaline burn.
    Song E; Yang W; Cui ZH; Dong Y; Sui DM; Guan XK; Ma YL
    Chin Med J (Engl); 2005 Jun; 118(11):927-35. PubMed ID: 15978194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RCE1 corneal epithelial cell line: its variability on phenotype expression and differential response to growth factors.
    Tamariz E; Hernandez-Quintero M; Sánchez-Guzman E; Arguello C; Castro-Muñozledo F
    Arch Med Res; 2007 Feb; 38(2):176-84. PubMed ID: 17227726
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of limbal keratinocyte proliferation and differentiation by TAp63 and DeltaNp63 transcription factors.
    Wang DY; Cheng CC; Kao MH; Hsueh YJ; Ma DH; Chen JK
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3102-8. PubMed ID: 16123408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of epidermal growth factor, hepatocyte growth factor, and keratinocyte growth factor, on proliferation, motility and differentiation of human corneal epithelial cells.
    Wilson SE; He YG; Weng J; Zieske JD; Jester JV; Schultz GS
    Exp Eye Res; 1994 Dec; 59(6):665-78. PubMed ID: 7698260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrated control of growth and differentiation of normal human prokeratinocytes cultured in serum-free medium: clonal analyses, growth kinetics, and cell cycle studies.
    Wille JJ; Pittelkow MR; Shipley GD; Scott RE
    J Cell Physiol; 1984 Oct; 121(1):31-44. PubMed ID: 6207187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence suggesting the existence of stem cells for the human corneal endothelium.
    Whikehart DR; Parikh CH; Vaughn AV; Mishler K; Edelhauser HF
    Mol Vis; 2005 Sep; 11():816-24. PubMed ID: 16205623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A study on effect of basic fibroblast growth factor on human limbal stem cell proliferation cultured in low calcium medium].
    Cai Y; Wu J
    Zhonghua Yan Ke Za Zhi; 2001 Jul; 37(4):259-62. PubMed ID: 11864432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of extracellular matrix components in the limbal epithelial stem cell compartment.
    Schlötzer-Schrehardt U; Dietrich T; Saito K; Sorokin L; Sasaki T; Paulsson M; Kruse FE
    Exp Eye Res; 2007 Dec; 85(6):845-60. PubMed ID: 17927980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Serum-free media for culturing and serial-passaging of adult human retinal pigment epithelium.
    Tezel TH; Del Priore LV
    Exp Eye Res; 1998 Jun; 66(6):807-15. PubMed ID: 9657913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxygen tension affects terminal differentiation of corneal limbal epithelial cells.
    Li C; Yin T; Dong N; Dong F; Fang X; Qu YL; Tan Y; Wu H; Liu Z; Li W
    J Cell Physiol; 2011 Sep; 226(9):2429-37. PubMed ID: 21660966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical and morphological characterization of growth and differentiation of normal human neonatal keratinocytes in a serum-free medium.
    Pillai S; Bikle DD; Hincenbergs M; Elias PM
    J Cell Physiol; 1988 Feb; 134(2):229-37. PubMed ID: 2450102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of stromal inflammation on the outcome of limbal transplantation for corneal surface reconstruction.
    Tsai RJ; Tseng SC
    Cornea; 1995 Sep; 14(5):439-49. PubMed ID: 8536455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vitronectin supports migratory responses of corneal epithelial cells to substrate bound IGF-I and HGF, and facilitates serum-free cultivation.
    Ainscough SL; Barnard Z; Upton Z; Harkin DG
    Exp Eye Res; 2006 Dec; 83(6):1505-14. PubMed ID: 17046752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ex-vivo potential of cadaveric and fresh limbal tissues to regenerate cultured epithelium.
    Vemuganti GK; Kashyap S; Sangwan VS; Singh S
    Indian J Ophthalmol; 2004 Jun; 52(2):113-20. PubMed ID: 15283215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ex vivo expansion of conjunctival and limbal epithelial cells using cord blood serum-supplemented culture medium.
    Ang LP; Do TP; Thein ZM; Reza HM; Tan XW; Yap C; Tan DT; Beuerman RW
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6138-47. PubMed ID: 21474776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A subset of human limbal epithelial cells with greater nucleus-to-cytoplasm ratio expressing high levels of p63 possesses slow-cycling property.
    Arpitha P; Prajna NV; Srinivasan M; Muthukkaruppan V
    Cornea; 2008 Dec; 27(10):1164-70. PubMed ID: 19034133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Corneal epithelial cultures generated from organ-cultured limbal tissue: factors influencing epithelial cell growth.
    Zito-Abbad E; Borderie VM; Baudrimont M; Bourcier T; Laroche L; Chapel C; Uzel JL
    Curr Eye Res; 2006 May; 31(5):391-9. PubMed ID: 16714230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas.
    McGowan SL; Edelhauser HF; Pfister RR; Whikehart DR
    Mol Vis; 2007 Oct; 13():1984-2000. PubMed ID: 17982423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.