These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 15730023)
1. Monitoring of accelerated naphthalene-biodegradation in a bioaugmented soil slurry. Piskonen R; Nyyssönen M; Rajamäki T; Itävaara M Biodegradation; 2005 Mar; 16(2):127-34. PubMed ID: 15730023 [TBL] [Abstract][Full Text] [Related]
2. Dynamic changes in bacterial community structure and in naphthalene dioxygenase expression in vermicompost-amended PAH-contaminated soils. Di Gennaro P; Moreno B; Annoni E; García-Rodríguez S; Bestetti G; Benitez E J Hazard Mater; 2009 Dec; 172(2-3):1464-9. PubMed ID: 19717238 [TBL] [Abstract][Full Text] [Related]
3. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. Gomes NC; Kosheleva IA; Abraham WR; Smalla K FEMS Microbiol Ecol; 2005 Sep; 54(1):21-33. PubMed ID: 16329969 [TBL] [Abstract][Full Text] [Related]
4. Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments. Wilson MS; Herrick JB; Jeon CO; Hinman DE; Madsen EL Appl Environ Microbiol; 2003 Apr; 69(4):2172-81. PubMed ID: 12676698 [TBL] [Abstract][Full Text] [Related]
5. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes. Piskonen R; Nyyssönen M; Itävaara M Biodegradation; 2008 Nov; 19(6):883-95. PubMed ID: 18425625 [TBL] [Abstract][Full Text] [Related]
6. Dynamic changes in nahAc gene copy numbers during degradation of naphthalene in PAH-contaminated soils. Park JW; Crowley DE Appl Microbiol Biotechnol; 2006 Oct; 72(6):1322-9. PubMed ID: 16804694 [TBL] [Abstract][Full Text] [Related]
7. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers. Tuomi PM; Salminen JM; Jørgensen KS FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859 [TBL] [Abstract][Full Text] [Related]
8. Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Herrick JB; Stuart-Keil KG; Ghiorse WC; Madsen EL Appl Environ Microbiol; 1997 Jun; 63(6):2330-7. PubMed ID: 9172352 [TBL] [Abstract][Full Text] [Related]
9. Molecular diagnostics of polycyclic aromatic hydrocarbon biodegradation in manufactured gas plant soils. Sanseverino J; Werner C; Fleming J; Applegate B; King JM; Sayler GS Biodegradation; 1993-1994; 4(4):303-21. PubMed ID: 7516749 [TBL] [Abstract][Full Text] [Related]
10. A targeted real-time PCR assay for studying naphthalene degradation in the environment. Nyyssönen M; Piskonen R; Itävaara M Microb Ecol; 2006 Oct; 52(3):533-43. PubMed ID: 17013553 [TBL] [Abstract][Full Text] [Related]
11. Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase. Hedlund BP; Geiselbrecht AD; Staley JT FEMS Microbiol Lett; 2001 Jul; 201(1):47-51. PubMed ID: 11445166 [TBL] [Abstract][Full Text] [Related]
12. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7. Lee K; Park JW; Ahn IS J Hazard Mater; 2003 Dec; 105(1-3):157-67. PubMed ID: 14623425 [TBL] [Abstract][Full Text] [Related]
13. Survival and naphthalene-degrading activity of Rhodococcus sp. strain 1BN in soil microcosms. Cavalca L; Colombo M; Larcher S; Gigliotti C; Collina E; Andreoni V J Appl Microbiol; 2002; 92(6):1058-65. PubMed ID: 12010546 [TBL] [Abstract][Full Text] [Related]
14. Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. Jin HM; Kim JM; Lee HJ; Madsen EL; Jeon CO Environ Sci Technol; 2012 Jul; 46(14):7731-40. PubMed ID: 22709320 [TBL] [Abstract][Full Text] [Related]
15. Influence of naphthalene biodegradation on the adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil. Hwang G; Park SR; Lee CH; Ahn IS; Yoon YJ; Mhin BJ J Hazard Mater; 2009 Dec; 172(1):491-3. PubMed ID: 19656625 [TBL] [Abstract][Full Text] [Related]
16. Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Singleton DR; Powell SN; Sangaiah R; Gold A; Ball LM; Aitken MD Appl Environ Microbiol; 2005 Mar; 71(3):1202-9. PubMed ID: 15746319 [TBL] [Abstract][Full Text] [Related]
17. Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Herrick JB; Madsen EL; Batt CA; Ghiorse WC Appl Environ Microbiol; 1993 Mar; 59(3):687-94. PubMed ID: 7683182 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of naphthalene-catabolic genes and plasmids from oil-contaminated soil by using two cultivation-independent approaches. Ono A; Miyazaki R; Sota M; Ohtsubo Y; Nagata Y; Tsuda M Appl Microbiol Biotechnol; 2007 Feb; 74(2):501-10. PubMed ID: 17096121 [TBL] [Abstract][Full Text] [Related]
19. [Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems]. Akhmetov LI; Filonov AE; Puntus IF; Kosheleva IA; Nechaeva IA; Yonge DR; Petersen JN; Boronin AM Mikrobiologiia; 2008; 77(1):29-39. PubMed ID: 18365719 [TBL] [Abstract][Full Text] [Related]
20. Genome Analysis of Naphthalene-Degrading Kim J; Park W J Microbiol Biotechnol; 2018 Feb; 28(2):330-337. PubMed ID: 29169219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]