BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15730280)

  • 1. Constrained nucleic acids (CNA). Part 2. Synthesis of conformationally restricted dinucleotide units featuring noncanonical alpha/beta/gamma or delta/epsilon/zeta torsion angle combinations.
    Le Clézio I; Gornitzka H; Escudier JM; Vigroux A
    J Org Chem; 2005 Mar; 70(5):1620-9. PubMed ID: 15730280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diastereoselective synthesis of a conformationally restricted dinucleotide with predefined alpha and beta torsional angles for the construction of alpha,beta-constrained nucleic acids (alpha,beta-CNA).
    Le Clézio I; Escudier JM; Vigroux A
    Org Lett; 2003 Jan; 5(2):161-4. PubMed ID: 12529130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double sugar and phosphate backbone-constrained nucleotides: synthesis, structure, stability, and their incorporation into oligodeoxynucleotides.
    Zhou C; Plashkevych O; Chattopadhyaya J
    J Org Chem; 2009 May; 74(9):3248-65. PubMed ID: 19348480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlating the 31P NMR chemical shielding tensor and the 2J(P,C) spin-spin coupling constants with torsion angles ζ and α in the backbone of nucleic acids.
    Benda L; Sochorová Vokáčová Z; Straka M; Sychrovský V
    J Phys Chem B; 2012 Mar; 116(12):3823-33. PubMed ID: 22380464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha,beta-D-CNA induced rigidity within oligonucleotides.
    Dupouy C; Iché-Tarrat N; Durrieu MP; Vigroux A; Escudier JM
    Org Biomol Chem; 2008 Aug; 6(16):2849-51. PubMed ID: 18688476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational studies of nucleic acids: IV. The conformational energetics of oligonucleotides: d(ApApApA) and ApApApA.
    Pearlman DA; Kim SH
    J Biomol Struct Dyn; 1986 Aug; 4(1):69-98. PubMed ID: 2482750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-dependent DNA structure: the role of the sugar-phosphate backbone.
    Packer MJ; Hunter CA
    J Mol Biol; 1998 Jul; 280(3):407-20. PubMed ID: 9665845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleic acid folding determined by mesoscale modeling and NMR spectroscopy: solution structure of d(GCGAAAGC).
    Santini GP; Cognet JA; Xu D; Singarapu KK; Hervé du Penhoat C
    J Phys Chem B; 2009 May; 113(19):6881-93. PubMed ID: 19374420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based design of a highly constrained nucleic acid analogue: improved duplex stabilization by restricting sugar pucker and torsion angle γ.
    Hanessian S; Schroeder BR; Giacometti RD; Merner BL; Ostergaard M; Swayze EE; Seth PP
    Angew Chem Int Ed Engl; 2012 Nov; 51(45):11242-5. PubMed ID: 22915274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of the ApA, ApC, CpA, and CpC RNA dinucleoside monophosphates resolved with NMR scalar spin-spin couplings.
    Vokácová Z; Budĕsínský M; Rosenberg I; Schneider B; Sponer J; Sychrovský V
    J Phys Chem B; 2009 Jan; 113(4):1182-91. PubMed ID: 19128019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational analysis of a dinucleotide photodimer with the aid of the genetic algorithm.
    Blommers MJ; Lucasius CB; Kateman G; Kaptein R
    Biopolymers; 1992 Jan; 32(1):45-52. PubMed ID: 1617149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural properties of polymeric DNA from molecular dynamics simulations.
    Samanta S; Mukherjee S; Chakrabarti J; Bhattacharyya D
    J Chem Phys; 2009 Mar; 130(11):115103. PubMed ID: 19317569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting nucleic acid torsion angle values using artificial neural networks.
    Beckers ML; Melssen WJ; Buydens LM
    J Comput Aided Mol Des; 1998 Jan; 12(1):53-61. PubMed ID: 9570089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dioxaphosphorinane-constrained nucleic Acid dinucleotides as tools for structural tuning of nucleic acids.
    Catana DA; Renard BL; Maturano M; Payrastre C; Tarrat N; Escudier JM
    J Nucleic Acids; 2012; 2012():215876. PubMed ID: 23150809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis, and analysis of conformationally constrained nucleic acids.
    Glick GD
    Biopolymers; 1998; 48(1):83-96. PubMed ID: 9846126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α,β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction.
    Martínez O; Ecochard V; Mahéo S; Gross G; Bodin P; Teissié J; Escudier JM; Paquereau L
    PLoS One; 2011; 6(10):e25510. PubMed ID: 21991314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometrical and electronic structure variability of the sugar-phosphate backbone in nucleic acids.
    Svozil D; Sponer JE; Marchan I; Pérez A; Cheatham TE; Forti F; Luque FJ; Orozco M; Sponer J
    J Phys Chem B; 2008 Jul; 112(27):8188-97. PubMed ID: 18558755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient search on energy minima for structure prediction of nucleic acid motifs.
    Villescas-Diaz G; Zacharias M
    J Biomol Struct Dyn; 2004 Dec; 22(3):355-64. PubMed ID: 15473709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indirect NMR spin-spin coupling constants 3J(P,C) and 2J(P,H) across the P-O...H-C link can be used for structure determination of nucleic acids.
    Sychrovský V; Sponer J; Trantírek L; Schneider B
    J Am Chem Soc; 2006 May; 128(21):6823-8. PubMed ID: 16719462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational structure variations in DNA: a PCILO study.
    Saran A; Choudhury MR
    Indian J Biochem Biophys; 1993 Feb; 30(1):1-6. PubMed ID: 8509120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.