These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15730283)

  • 1. Kinetics and mechanism of hydration of o-thioquinone methide in aqueous solution. Rate-determining protonation of sulfur.
    Chiang Y; Kresge AJ; Sadovski O; Zhan HQ
    J Org Chem; 2005 Mar; 70(5):1643-6. PubMed ID: 15730283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flash photolytic generation and study of p-quinone methide in aqueous solution. An estimate of rate and equilibrium constants for heterolysis of the carbon-bromine bond in p-hydroxybenzyl bromide.
    Chiang Y; Kresge AJ; Zhu Y
    J Am Chem Soc; 2002 Jun; 124(22):6349-56. PubMed ID: 12033864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flash photolytic generation of ortho-quinone methide in aqueous solution and study of its chemistry in that medium.
    Chiang Y; Kresge AJ; Zhu Y
    J Am Chem Soc; 2001 Aug; 123(33):8089-94. PubMed ID: 11506565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flash photolytic generation of o-quinone alpha-phenylmethide and o-quinone alpha-(p-anisyl)methide in aqueous solution and investigation of their reactions in that medium. Saturation of acid-catalyzed hydration.
    Chiang Y; Kresge AJ; Zhu Y
    J Am Chem Soc; 2002 Jan; 124(4):717-22. PubMed ID: 11804503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkylation of guanosine and 2'-deoxyguanosine by o-quinone alpha-(p-anisyl)methide in aqueous solution.
    Chiang Y; Kresge AJ
    Org Biomol Chem; 2004 Apr; 2(7):1090-2. PubMed ID: 15034634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of isomerization of 4-propyl-o-quinone to its tautomeric p-quinone methide.
    Bolton JL; Wu HM; Hu LQ
    Chem Res Toxicol; 1996; 9(1):109-113. PubMed ID: 8924578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual reactivity of hydroxy- and methoxy- substituted o-quinone methides in aqueous solutions: hydration versus tautomerization.
    Arumugam S; Popik VV
    J Org Chem; 2010 Nov; 75(21):7338-46. PubMed ID: 20925363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and mechanism of S-nitrosothiol acid-catalyzed hydrolysis: sulfur activation promotes facile NO+ release.
    Moran EE; Timerghazin QK; Kwong E; English AM
    J Phys Chem B; 2011 Mar; 115(12):3112-26. PubMed ID: 21384833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The acid hydrolysis mechanism of acetals catalyzed by a supramolecular assembly in basic solution.
    Pluth MD; Bergman RG; Raymond KN
    J Org Chem; 2009 Jan; 74(1):58-63. PubMed ID: 19113901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. o-Quinone methide as alkylating agent of nitrogen, oxygen, and sulfur nucleophiles. The role of H-bonding and solvent effects on the reactivity through a DFT computational study.
    Di Valentin C; Freccero M; Zanaletti R; Sarzi-Amadè M
    J Am Chem Soc; 2001 Aug; 123(34):8366-77. PubMed ID: 11516286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous ferryl(IV) ion: kinetics of oxygen atom transfer to substrates and oxo exchange with solvent water.
    Pestovsky O; Bakac A
    Inorg Chem; 2006 Jan; 45(2):814-20. PubMed ID: 16411719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent effects on the oxidation of RuIV=O to O=RuVI=O by MnO4-. hydrogen-atom versus oxygen-atom transfer.
    Lam WW; Man WL; Leung CF; Wong CY; Lau TC
    J Am Chem Soc; 2007 Nov; 129(44):13646-52. PubMed ID: 17929922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the alcohol- and water-catalyzed tautomerization of vitamins K1- and K2-derived quinone methide intermediates.
    Swartz AM; Barra M; Kuntz D
    J Org Chem; 2004 Apr; 69(9):3198-201. PubMed ID: 15104464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleophilic substitution reactions of N-chloramines: evidence for a change in mechanism with increasing nucleophile reactivity.
    Calvo P; Crugeiras J; Ríos A; Ríos MA
    J Org Chem; 2007 Apr; 72(9):3171-8. PubMed ID: 17397221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does the exchange of one oxygen atom with sulfur affect the catalytic cycle of carbonic anhydrase?
    Schenk S; Kesselmeier J; Anders E
    Chemistry; 2004 Jun; 10(12):3091-105. PubMed ID: 15214093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochemical generation and the reactivity of o-naphthoquinone methides in aqueous solutions.
    Arumugam S; Popik VV
    J Am Chem Soc; 2009 Aug; 131(33):11892-9. PubMed ID: 19650661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular catalysis of orthoformate hydrolysis in basic solution: an enzyme-like mechanism.
    Pluth MD; Bergman RG; Raymond KN
    J Am Chem Soc; 2008 Aug; 130(34):11423-9. PubMed ID: 18680290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid-catalysed chlorine transfer from N-chloramines to iodide ion: experimental evidence for a predicted change in mechanism.
    Calvo P; Crugeiras J; Ríos A
    Org Biomol Chem; 2010 Sep; 8(18):4137-42. PubMed ID: 20664852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of deuterium substitution on electron transfer at cytochrome c/SAM interfaces.
    Davis KL; Waldeck DH
    J Phys Chem B; 2008 Oct; 112(39):12498-507. PubMed ID: 18781714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.