BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 15731879)

  • 1. Involvement of proton transfer in the reductive repair of DNA guanyl radicals by aniline derivatives.
    Ly A; Tran NQ; Sullivan K; Bandong SL; Milligan JR
    Org Biomol Chem; 2005 Mar; 3(5):917-23. PubMed ID: 15731879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of DNA guanyl radicals with phenolate anions.
    Ly A; Bandong SL; Tran NQ; Sullivan KJ; Milligan JR
    J Phys Chem B; 2005 Jul; 109(27):13368-74. PubMed ID: 16852669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox equilibrium between guanyl radicals and thiocyanate influences base damage yields in gamma irradiated plasmid DNA. Estimation of the reduction potential of guanyl radicals in plasmid DNA in aqueous solution at physiological ionic strength.
    Milligan JR; Aguilera JA; Ward JF
    Int J Radiat Biol; 2001 Dec; 77(12):1195-205. PubMed ID: 11747544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction of guanyl radicals in plasmid DNA with biological reductants: chemical repair of DNA damage produced by the direct effect of ionizing radiation.
    Milligan JR; Aguilera JA; Mares EJ; Paglinawan RA; Ward JF
    Int J Radiat Biol; 2001 Nov; 77(11):1095-108. PubMed ID: 11683980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair of oxidative guanine damage in plasmid DNA by indoles involves proton transfer between complementary bases.
    Ly A; Tran NQ; Ward JF; Milligan JR
    Biochemistry; 2004 Jul; 43(28):9098-104. PubMed ID: 15248767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of electron deficient guanine radical species in plasmid DNA by tyrosine derivatives.
    Tsoi M; Do TT; Tang VJ; Aguilera JA; Milligan JR
    Org Biomol Chem; 2010 Jun; 8(11):2553-9. PubMed ID: 20485790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repair of guanyl radicals in plasmid DNA by electron transfer is coupled to proton transfer.
    Milligan JR; Aguilera JA; Hoang O; Ly A; Tran NQ; Ward JF
    J Am Chem Soc; 2004 Feb; 126(6):1682-7. PubMed ID: 14871098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of ionizing radiation clustered damage: estimate of the migration distance of holes through DNA via guanyl radicals under physiological conditions.
    Milligan JR; Aguilera JA; Paglinawan RA; Nguyen KJ; Ward JF
    Int J Radiat Biol; 2002 Aug; 78(8):733-41. PubMed ID: 12194757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-electron oxidation of plasmid DNA by selenium(V) species.
    Milligan JR; Aguilera JA; Paglinawan RA; Ward JF
    Int J Radiat Biol; 2002 May; 78(5):359-74. PubMed ID: 12020427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repair of oxidative DNA damage by amino acids.
    Milligan JR; Aguilera JA; Ly A; Tran NQ; Hoang O; Ward JF
    Nucleic Acids Res; 2003 Nov; 31(21):6258-63. PubMed ID: 14576314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox reactivity of guanyl radicals in plasmid DNA.
    Milligan JR; Aguilera JA; Nguyen JV; Ward JF
    Int J Radiat Biol; 2001 Mar; 77(3):281-93. PubMed ID: 11258842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure reactivity relationship in the reaction of DNA guanyl radicals with hydroxybenzoates.
    Do TT; Tang VJ; Aguilera JA; Milligan JR
    Radiat Phys Chem Oxf Engl 1993; 2010 Nov; 79(1):1144-1148. PubMed ID: 21966099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yield of DNA strand breaks after base oxidation of plasmid DNA.
    Milligan JR; Aguilera JA; Nguyen TT; Ward JF; Kow YW; He B; Cunningham RP
    Radiat Res; 1999 Mar; 151(3):334-42. PubMed ID: 10073672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of oxidation of guanine in DNA by carbonate radical anion, a decomposition product of nitrosoperoxycarbonate.
    Lee YA; Yun BH; Kim SK; Margolin Y; Dedon PC; Geacintov NE; Shafirovich V
    Chemistry; 2007; 13(16):4571-81. PubMed ID: 17335089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide repair of oxidative DNA damage.
    Milligan JR; Tran NQ; Ly A; Ward JF
    Biochemistry; 2004 May; 43(17):5102-8. PubMed ID: 15109269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Two Faces of the Guanyl Radical: Molecular Context and Behavior.
    Chatgilialoglu C
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34207639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is "frank" DNA-strand breakage via the guanine radical thermodynamically and sterically possible?
    Steenken S; Jovanovic SV; Candeias LP; Reynisson J
    Chemistry; 2001 Jul; 7(13):2829-33. PubMed ID: 11486959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protection against radiation-induced DNA damage by amino acids: a DFT study.
    Jena NR; Mishra PC; Suhai S
    J Phys Chem B; 2009 Apr; 113(16):5633-44. PubMed ID: 19334703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA lesions derived from the site selective oxidation of Guanine by carbonate radical anions.
    Joffe A; Geacintov NE; Shafirovich V
    Chem Res Toxicol; 2003 Dec; 16(12):1528-38. PubMed ID: 14680366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-dependent reactivity of oxyfunctionalized acetophenones in the photooxidation of DNA: base oxidation and strand breaks through photolytic radical formation (spin trapping, EPR spectroscopy, transient kinetics) versus photosensitization (electron transfer, hydrogen-atom abstraction).
    Adam W; Arnold MA; Nau WM; Pischel U; Saha-Möller CR
    Nucleic Acids Res; 2001 Dec; 29(24):4955-62. PubMed ID: 11812825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.