These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 15732988)

  • 1. A theoretical study on the mechanism of the reductive half-reaction of xanthine oxidase.
    Zhang XH; Wu YD
    Inorg Chem; 2005 Mar; 44(5):1466-71. PubMed ID: 15732988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman studies of xanthine oxidase: The reduced enzyme-product complex with violapterin.
    Hemann C; Ilich P; Stockert AL; Choi EY; Hille R
    J Phys Chem B; 2005 Feb; 109(7):3023-31. PubMed ID: 16851316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17Q- and 13C-ENDOR and kinetic studies.
    Howes BD; Bray RC; Richards RL; Turner NA; Bennett B; Lowe DJ
    Biochemistry; 1996 Feb; 35(5):1432-43. PubMed ID: 8634273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QM/MM studies of xanthine oxidase: variations of cofactor, substrate, and active-site Glu802.
    Metz S; Thiel W
    J Phys Chem B; 2010 Jan; 114(3):1506-17. PubMed ID: 20050623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonation and Sulfido versus Oxo Ligation Changes at the Molybdenum Cofactor in Xanthine Dehydrogenase (XDH) Variants Studied by X-ray Absorption Spectroscopy.
    Reschke S; Mebs S; Sigfridsson-Clauss KG; Kositzki R; Leimkühler S; Haumann M
    Inorg Chem; 2017 Feb; 56(4):2165-2176. PubMed ID: 28170236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the active-site design of molybdenum oxo-transfer enzymes by quantum mechanical calculations.
    Li J; Ryde U
    Inorg Chem; 2014 Nov; 53(22):11913-24. PubMed ID: 25372012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and interactions of molybdenum and iron-sulfur centers in bacterial enzymes of the xanthine oxidase family: mechanistic implications.
    Canne C; Lowe DJ; Fetzner S; Adams B; Smith AT; Kappl R; Bray RC; Hüttermann J
    Biochemistry; 1999 Oct; 38(42):14077-87. PubMed ID: 10529255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation reaction by xanthine oxidase: theoretical study of reaction mechanism.
    Amano T; Ochi N; Sato H; Sakaki S
    J Am Chem Soc; 2007 Jul; 129(26):8131-8. PubMed ID: 17564439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined QM/MM study on the reductive half-reaction of xanthine oxidase: substrate orientation and mechanism.
    Metz S; Thiel W
    J Am Chem Soc; 2009 Oct; 131(41):14885-902. PubMed ID: 19788181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molybdenum-cofactor-containing enzymes: structure and mechanism.
    Kisker C; Schindelin H; Rees DC
    Annu Rev Biochem; 1997; 66():233-67. PubMed ID: 9242907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive half-reaction of aldehyde oxidoreductase toward acetaldehyde: a combined QM/MM study.
    Metz S; Wang D; Thiel W
    J Am Chem Soc; 2009 Apr; 131(13):4628-40. PubMed ID: 19290633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the mechanism of action of xanthine oxidase.
    Choi EY; Stockert AL; Leimkühler S; Hille R
    J Inorg Biochem; 2004 May; 98(5):841-8. PubMed ID: 15134930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reductive half-reaction of xanthine oxidase. The involvement of prototropic equilibria in the course of the catalytic sequence.
    Kim JH; Ryan MG; Knaut H; Hille R
    J Biol Chem; 1996 Mar; 271(12):6771-80. PubMed ID: 8636099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reductive half-reaction of xanthine oxidase. Reaction with aldehyde substrates and identification of the catalytically labile oxygen.
    Xia M; Dempski R; Hille R
    J Biol Chem; 1999 Feb; 274(6):3323-30. PubMed ID: 9920873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate.
    Yamaguchi Y; Matsumura T; Ichida K; Okamoto K; Nishino T
    J Biochem; 2007 Apr; 141(4):513-24. PubMed ID: 17301077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of xanthine oxidase activity by substrates at active sites via cooperative interactions between catalytic subunits: implication to drug pharmacokinetics.
    Tai LA; Hwang KC
    Curr Med Chem; 2011; 18(1):69-78. PubMed ID: 21110814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a Rhodobacter capsulatus L-cysteine desulfurase that sulfurates the molybdenum cofactor when bound to XdhC and before its insertion into xanthine dehydrogenase.
    Neumann M; Stöcklein W; Walburger A; Magalon A; Leimkühler S
    Biochemistry; 2007 Aug; 46(33):9586-95. PubMed ID: 17649978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometrical control of the active site electronic structure of pyranopterin enzymes by metal-dithiolate folding: aldehyde oxidase.
    Joshi HK; Enemark JH
    J Am Chem Soc; 2004 Sep; 126(38):11784-5. PubMed ID: 15382900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reaction mechanism of xanthine oxidase: evidence for two-electron chemistry rather than sequential one-electron steps.
    Stockert AL; Shinde SS; Anderson RF; Hille R
    J Am Chem Soc; 2002 Dec; 124(49):14554-5. PubMed ID: 12465963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfido and cysteine ligation changes at the molybdenum cofactor during substrate conversion by formate dehydrogenase (FDH) from Rhodobacter capsulatus.
    Schrapers P; Hartmann T; Kositzki R; Dau H; Reschke S; Schulzke C; Leimkühler S; Haumann M
    Inorg Chem; 2015 Apr; 54(7):3260-71. PubMed ID: 25803130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.