These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 15733052)

  • 1. Estimation of the left ventricular relaxation time constant tau requires consideration of the pressure asymptote.
    Langer SF; Habazettl H; Kuebler WM; Pries AR
    Physiol Res; 2005; 54(6):601-10. PubMed ID: 15733052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multivariate regression analysis of the influence of aortic pressure, end-diastolic pressure, and heart rate on left ventricular relaxation in isolated ejecting rat and guinea pig hearts.
    Langer SF
    Res Exp Med (Berl); 1999 Dec; 199(3):153-66. PubMed ID: 10639699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential laws of left ventricular isovolumic pressure fall.
    Langer SF
    Physiol Res; 2002; 51(1):1-15. PubMed ID: 12071284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Four-parametric non-linear regression fit of isovolumic relaxation in isolated ejecting rat and guinea pig hearts.
    Langer SF
    Jpn J Physiol; 2000 Feb; 50(1):101-13. PubMed ID: 10866702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different left ventricular relaxation parameters in isolated working rat and guinea pig hearts. Influence of preload, afterload, temperature, and isoprenaline.
    Langer SF; Schmidt HD
    Int J Card Imaging; 1998 Aug; 14(4):229-40. PubMed ID: 9934611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ransacking the curve of cardiac isovolumic pressure decay by logistic-and-oscillation regression.
    Langer SF
    Jpn J Physiol; 2004 Aug; 54(4):347-56. PubMed ID: 15631690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of preload on left ventricular relaxation in isolated ejecting hearts during myocardial depression.
    Langer SF; Schmidt HD
    Exp Clin Cardiol; 2003; 8(2):83-90. PubMed ID: 19641655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isovolumic pressure-to-early rapid filling decay rate relation: model-based derivation and validation via simultaneous catheterization echocardiography.
    Chung CS; Ajo DM; Kovács SJ
    J Appl Physiol (1985); 2006 Feb; 100(2):528-34. PubMed ID: 16223980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of left ventricular relaxation in the isolated guinea pig heart.
    Schäfer S; Schlack W; Kelm M; Deussen A; Strauer BE
    Res Exp Med (Berl); 1996; 196(5):261-73. PubMed ID: 9010958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of isovolumic relaxation in failing hearts by monoexponential time constants overestimates lusitropic change and load dependence: mechanisms and advantages of alternative logistic fit.
    Senzaki H; Kass DA
    Circ Heart Fail; 2010 Mar; 3(2):268-76. PubMed ID: 20035066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in tau, the time constant for isovolumic relaxation, along the left ventricular base-to-apex axis.
    Davis KL; Mehlhorn U; Schertel ER; Geissler HJ; Trevas D; Laine GA; Allen SJ
    Basic Res Cardiol; 1999 Feb; 94(1):41-8. PubMed ID: 10097829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ventricular relaxation and myocardial ischemia: a comparison of different models of tau during coronary angioplasty.
    Simari RD; Bell MR; Schwartz RS; Nishimura RA; Holmes DR
    Cathet Cardiovasc Diagn; 1992 Apr; 25(4):278-84. PubMed ID: 1571988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical assessment of left ventricular relaxation.
    Constable P; Muir W; Sisson D
    J Vet Intern Med; 1999; 13(1):5-13. PubMed ID: 10052057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure.
    Weiss JL; Frederiksen JW; Weisfeldt ML
    J Clin Invest; 1976 Sep; 58(3):751-60. PubMed ID: 956400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the time constant of relaxation: insights from simulations and hemodynamic measurements.
    De Mey S; Thomas JD; Greenberg NL; Vandervoort PM; Verdonck PR
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2936-43. PubMed ID: 11356655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early return of augmented wave reflection impairs left ventricular relaxation in aged Fisher 344 rats.
    Wu MS; Chang CY; Chang RW; Chang KC
    Exp Gerontol; 2012 Sep; 47(9):680-6. PubMed ID: 22750485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of left-ventricular function.
    Schertel ER
    Thorac Cardiovasc Surg; 1998 Sep; 46 Suppl 2():248-54. PubMed ID: 9822175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Half-logistic time constant: a more reliable lusitropic index than monoexponential time constant regardless of temperature in canine left ventricle.
    Mizuno J; Matsubara H; Mohri S; Shimizu J; Suzuki S; Mikane T; Araki J; Hanaoka K; Akins R; Morita S
    Can J Physiol Pharmacol; 2008 Mar; 86(3):78-87. PubMed ID: 18418434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Starling-effect-independent lusitropism index in canine left ventricle: logistic time constant.
    Mizuno J; Mohri S; Shimizu J; Suzuki S; Mikane T; Araki J; Matsubara H; Morita T; Hanaoka K; Suga H
    Anesth Analg; 2006 Apr; 102(4):1032-9. PubMed ID: 16551893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effect of heart rate on the time constant of isovolumic relaxation of the left ventricle].
    Mori S; Yamakado T; Ohkubo S; Hayashi T; Teramura S; Fukui A; Murayama S; Kato N; Ueda K; Nakano T
    J Cardiol; 1992; 22(2-3):531-7. PubMed ID: 1339812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.