These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 15733079)

  • 1. Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters.
    Rogers KL; Stinnakre J; Agulhon C; Jublot D; Shorte SL; Kremer EJ; Brûlet P
    Eur J Neurosci; 2005 Feb; 21(3):597-610. PubMed ID: 15733079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red-shifted aequorin-based bioluminescent reporters for in vivo imaging of Ca2 signaling.
    Curie T; Rogers KL; Colasante C; Brûlet P
    Mol Imaging; 2007; 6(1):30-42. PubMed ID: 17311763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium imaging in single neurons from brain slices using bioluminescent reporters.
    Drobac E; Tricoire L; Chaffotte AF; Guiot E; Lambolez B
    J Neurosci Res; 2010 Mar; 88(4):695-711. PubMed ID: 19798746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal network imaging in acute slices using Ca2+ sensitive bioluminescent reporter.
    Tricoire L; Lambolez B
    Methods Mol Biol; 2014; 1098():33-45. PubMed ID: 24166366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of aequorins to record and visualize Ca(2+) dynamics: from subcellular microdomains to whole organisms.
    Webb SE; Rogers KL; Karplus E; Miller AL
    Methods Cell Biol; 2010; 99():263-300. PubMed ID: 21035690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level.
    Baubet V; Le Mouellic H; Campbell AK; Lucas-Meunier E; Fossier P; Brúlet P
    Proc Natl Acad Sci U S A; 2000 Jun; 97(13):7260-5. PubMed ID: 10860991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Luminous plant and animals or the expression of aequorin and "chameleon" probes: a new light in calcium signaling].
    Thuleau P; Leclerc C; Xiong TC; Mazars C; Leclerc C; Moreau M
    J Soc Biol; 2003; 197(3):291-300. PubMed ID: 14708351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-multiplying charge-coupled detector-based bioluminescence recording of single-cell Ca2+.
    Rogers KL; Martin JR; Renaud O; Karplus E; Nicola MA; Nguyen M; Picaud S; Shorte SL; Brûlet P
    J Biomed Opt; 2008; 13(3):031211. PubMed ID: 18601535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of Ca²⁺ concentration with recombinant targeted luminescent probes.
    Ottolini D; Calì T; Brini M
    Methods Mol Biol; 2013; 937():273-91. PubMed ID: 23007593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo functional calcium imaging of induced or spontaneous activity in the fly brain using a GFP-apoaequorin-based bioluminescent approach.
    Minocci D; Carbognin E; Murmu MS; Martin JR
    Biochim Biophys Acta; 2013 Jul; 1833(7):1632-40. PubMed ID: 23287020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red fluorescent protein-aequorin fusions as improved bioluminescent Ca2+ reporters in single cells and mice.
    Bakayan A; Vaquero CF; Picazo F; Llopis J
    PLoS One; 2011 May; 6(5):e19520. PubMed ID: 21589654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically encoded optical probes for imaging cellular signaling pathways.
    Umezawa Y
    Biosens Bioelectron; 2005 Jun; 20(12):2504-11. PubMed ID: 15854822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium signaling and exocytosis in adrenal chromaffin cells.
    García AG; García-De-Diego AM; Gandía L; Borges R; García-Sancho J
    Physiol Rev; 2006 Oct; 86(4):1093-131. PubMed ID: 17015485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of intracellular calcium using bioluminescent aequorin expressed in human cells.
    Sheu YA; Kricka LJ; Pritchett DB
    Anal Biochem; 1993 Mar; 209(2):343-7. PubMed ID: 8470808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion of Aequorea victoria GFP and aequorin provides their Ca(2+)-induced interaction that results in red shift of GFP absorption and efficient bioluminescence energy transfer.
    Gorokhovatsky AY; Marchenkov VV; Rudenko NV; Ivashina TV; Ksenzenko VN; Burkhardt N; Semisotnov GV; Vinokurov LM; Alakhov YB
    Biochem Biophys Res Commun; 2004 Jul; 320(3):703-11. PubMed ID: 15240105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioluminescence Imaging of Neuronal Network Dynamics Using Aequorin-Based Calcium Sensors.
    Picaud S; Lambolez B; Tricoire L
    Methods Mol Biol; 2021; 2274():281-294. PubMed ID: 34050480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-illuminating quantum dot conjugates for in vivo imaging.
    So MK; Xu C; Loening AM; Gambhir SS; Rao J
    Nat Biotechnol; 2006 Mar; 24(3):339-43. PubMed ID: 16501578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral tuning of photoproteins by partnering site-directed mutagenesis strategies with the incorporation of chromophore analogs.
    Rowe L; Rothert A; Logue C; Ensor CM; Deo SK; Daunert S
    Protein Eng Des Sel; 2008 Feb; 21(2):73-81. PubMed ID: 18175778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding immune cell trafficking patterns via in vivo bioluminescence imaging.
    Mandl S; Schimmelpfennig C; Edinger M; Negrin RS; Contag CH
    J Cell Biochem Suppl; 2002; 39():239-48. PubMed ID: 12552623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioluminescence in the sea: photoprotein systems.
    Shimomura O
    Symp Soc Exp Biol; 1985; 39():351-72. PubMed ID: 2871634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.