These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 1573312)

  • 1. Current sheet applicator arrays for superficial hyperthermia of chestwall lesions.
    Gopal MK; Hand JW; Lumori ML; Alkhairi S; Paulsen KD; Cetas TC
    Int J Hyperthermia; 1992; 8(2):227-40. PubMed ID: 1573312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of a current sheet applicator array for superficial hyperthermia: incoherent versus coherent operation.
    Prior MV; Lumori ML; Hand JW; Lamaitre G; Schneider CJ; van Dijk JD
    IEEE Trans Biomed Eng; 1995 Jul; 42(7):694-8. PubMed ID: 7622152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia.
    Diederich CJ; Stauffer PR
    Int J Hyperthermia; 1993; 9(2):227-46. PubMed ID: 8468507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of applicators for a 27 MHz multielectrode current source interstitial hyperthermia system; impedance matching and effective power.
    Kaatee RS; Crezee J; Kanis AP; Lagendijk JJ; Levendag PC; Visser AG
    Phys Med Biol; 1997 Jun; 42(6):1087-108. PubMed ID: 9194130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of a multilayer polyacrylamide phantom for evaluation of hyperthermia applicators.
    Surowiec A; Shrivastava PN; Astrahan M; Petrovich Z
    Int J Hyperthermia; 1992; 8(6):795-807. PubMed ID: 1479205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the Sigma 60 applicator for regional hyperthermia in terms of scattering parameters.
    Leybovich LB; Myerson RJ; Emami B; Straube WL
    Int J Hyperthermia; 1991; 7(6):917-35. PubMed ID: 1806645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large stationary microstrip arrays for superficial microwave hyperthermia at 433 MHz: SAR analysis and clinical data.
    Ryan TP; Backus VL; Coughlin CT
    Int J Hyperthermia; 1995; 11(2):187-209. PubMed ID: 7790734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical and experimental comparison of three types of electromagnetic hyperthermia applicator.
    Johnson RH; Preece AW; Green JL
    Phys Med Biol; 1990 Jun; 35(6):761-79. PubMed ID: 2367546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstrip-antenna design for hyperthermia treatment of superficial tumors.
    Montecchia F
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A variable microwave array attenuator for use with single-element waveguide applicators.
    Sherar MD; Clark H; Cooper B; Kumaradas J; Liu FF
    Int J Hyperthermia; 1994; 10(5):723-31. PubMed ID: 7806927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an inductive, non-invasive RF applicator for studying hyperthermia in a rat brain tumour model.
    Heinzl L; Hunt JW; Bernstein M
    Int J Hyperthermia; 1991; 7(2):301-15. PubMed ID: 1880457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization by a matrix of light-emitting diodes of interference effects from a radiative four-applicator hyperthermia system.
    Schneider C; Van Dijk JD
    Int J Hyperthermia; 1991; 7(2):355-66. PubMed ID: 1880460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of microwave hyperthermia applicators.
    Chou CK
    Bioelectromagnetics; 1992; 13(6):581-97. PubMed ID: 1482420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of interstitial thermal coagulation: comparative evaluation of microwave and ultrasound applicators.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 2001 Jan; 28(1):104-17. PubMed ID: 11213915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An edge-element based finite element model of microwave heating in hyperthermia: method and verification.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):426-40. PubMed ID: 12227929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-applicator hyperthermia system description using scattering parameters.
    Raskmark P; Larsen T; Hornsleth SN
    Int J Hyperthermia; 1994; 10(1):143-51. PubMed ID: 8144985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 27 MHz hybrid evanescent-mode applicators (HEMA) with flexible heating field for deep and safe subcutaneous hyperthermia.
    Franconi C; Vrba J; Montecchia F
    Int J Hyperthermia; 1993; 9(5):655-73. PubMed ID: 8245578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical investigation of measurement procedures for the quality assurance of superficial hyperthermia applicators.
    Samaras T; van Rhoon GC; Sahalos JN
    Int J Hyperthermia; 2002; 18(5):416-25. PubMed ID: 12227928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics and performance evaluation of the capacitive Contact Flexible Microstrip Applicator operating at 70 MHz for external hyperthermia.
    van Wieringen N; Wiersma J; Zum Vörde Sive Vörding P; Oldenborg S; Gelvich EA; Mazokhin VN; van Dijk JD; Crezee J
    Int J Hyperthermia; 2009 Nov; 25(7):542-53. PubMed ID: 19848617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.