BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15733311)

  • 1. Hoxd13 expression in the developing limbs of the short-tailed fruit bat, Carollia perspicillata.
    Chen CH; Cretekos CJ; Rasweiler JJ; Behringer RR
    Evol Dev; 2005; 7(2):130-41. PubMed ID: 15733311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dual role for Hox genes in limb anterior-posterior asymmetry.
    Zákány J; Kmita M; Duboule D
    Science; 2004 Jun; 304(5677):1669-72. PubMed ID: 15192229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embryonic staging system for the short-tailed fruit bat, Carollia perspicillata, a model organism for the mammalian order Chiroptera, based upon timed pregnancies in captive-bred animals.
    Cretekos CJ; Weatherbee SD; Chen CH; Badwaik NK; Niswander L; Behringer RR; Rasweiler JJ
    Dev Dyn; 2005 Jul; 233(3):721-38. PubMed ID: 15861401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An examination of the Chiropteran HoxD locus from an evolutionary perspective.
    Ray R; Capecchi M
    Evol Dev; 2008; 10(6):657-70. PubMed ID: 19021736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-mount in situ hybridization of short-tailed fruit bat (Carollia perspicillata) embryos with RNA probes.
    Rasweiler JJ; Cretekos CJ; Behringer RR
    Cold Spring Harb Protoc; 2009 Mar; 2009(3):pdb.prot5164. PubMed ID: 20147099
    [No Abstract]   [Full Text] [Related]  

  • 6. Characterization of Xenopus digits and regenerated limbs of the froglet.
    Satoh A; Endo T; Abe M; Yakushiji N; Ohgo S; Tamura K; Ide H
    Dev Dyn; 2006 Dec; 235(12):3316-26. PubMed ID: 17075873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mouse Hoxd13(spdh) mutation, a polyalanine expansion similar to human type II synpolydactyly (SPD), disrupts the function but not the expression of other Hoxd genes.
    Bruneau S; Johnson KR; Yamamoto M; Kuroiwa A; Duboule D
    Dev Biol; 2001 Sep; 237(2):345-53. PubMed ID: 11543619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hoxd13 binds in vivo and regulates the expression of genes acting in key pathways for early limb and skeletal patterning.
    Salsi V; Vigano MA; Cocchiarella F; Mantovani R; Zappavigna V
    Dev Biol; 2008 May; 317(2):497-507. PubMed ID: 18407260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation, genomic structure and developmental expression of Fgf8 in the short-tailed fruit bat, Carollia perspicillata.
    Cretekos CJ; Deng JM; Green ED; ; Rasweiler JJ; Behringer RR
    Int J Dev Biol; 2007; 51(4):333-8. PubMed ID: 17554686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bat Accelerated Regions Identify a Bat Forelimb Specific Enhancer in the HoxD Locus.
    Booker BM; Friedrich T; Mason MK; VanderMeer JE; Zhao J; Eckalbar WL; Logan M; Illing N; Pollard KS; Ahituv N
    PLoS Genet; 2016 Mar; 12(3):e1005738. PubMed ID: 27019019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of early development in mammalian limb diversification: a descriptive comparison of early limb development between the Natal long-fingered bat (Miniopterus natalensis) and the mouse (Mus musculus).
    Hockman D; Mason MK; Jacobs DS; Illing N
    Dev Dyn; 2009 Apr; 238(4):965-79. PubMed ID: 19253395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of Hoxb13 and Hoxc10 in developing and regenerating Axolotl limbs and tails.
    Carlson MR; Komine Y; Bryant SV; Gardiner DM
    Dev Biol; 2001 Jan; 229(2):396-406. PubMed ID: 11150241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive evolution of 5'HoxD genes in the origin and diversification of the cetacean flipper.
    Wang Z; Yuan L; Rossiter SJ; Zuo X; Ru B; Zhong H; Han N; Jones G; Jepson PD; Zhang S
    Mol Biol Evol; 2009 Mar; 26(3):613-22. PubMed ID: 19074008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hox gene expression in limbs: colinearity by opposite regulatory controls.
    Hérault Y; Beckers J; Gérard M; Duboule D
    Dev Biol; 1999 Apr; 208(1):157-65. PubMed ID: 10075849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted disruption of Hoxd9 and Hoxd10 alters locomotor behavior, vertebral identity, and peripheral nervous system development.
    de la Cruz CC; Der-Avakian A; Spyropoulos DD; Tieu DD; Carpenter EM
    Dev Biol; 1999 Dec; 216(2):595-610. PubMed ID: 10642795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HOXD13 may play a role in idiopathic congenital clubfoot by regulating the expression of FHL1.
    Wang LL; Fu WN; Li-Ling J; Li ZG; Li LY; Sun KL
    Cytogenet Genome Res; 2008; 121(3-4):189-95. PubMed ID: 18758158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HOXA13 and HOXD13 expression during development of the syndactylous digits in the marsupial Macropus eugenii.
    Chew KY; Yu H; Pask AJ; Shaw G; Renfree MB
    BMC Dev Biol; 2012 Jan; 12():2. PubMed ID: 22235805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Gene expression of transcription regulator LMO 4 in tooth morphogenesis].
    Zhang L; Hua F; Sun ZJ; Zhang Q; Fan MW; Chen Z
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2005 Sep; 40(5):398-401. PubMed ID: 16255927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolutionary and developmental basis of parallel reduction in mammalian zeugopod elements.
    Sears KE; Behringer RR; Rasweiler JJ; Niswander LA
    Am Nat; 2007 Jan; 169(1):105-17. PubMed ID: 17206589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging developmental model systems.
    Kiefer JC
    Dev Dyn; 2006 Oct; 235(10):2895-9. PubMed ID: 16881053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.