BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 15733349)

  • 1. Visual pigment composition in zebrafish: Evidence for a rhodopsin-porphyropsin interchange system.
    Allison WT; Haimberger TJ; Hawryshyn CW; Temple SE
    Vis Neurosci; 2004; 21(6):945-52. PubMed ID: 15733349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of thermal contribution to photoreceptor sensitivity.
    Koskelainen A; Ala-Laurila P; Fyhrquist N; Donner K
    Nature; 2000 Jan; 403(6766):220-3. PubMed ID: 10646610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors.
    Xie HQ; Adler R
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4317-23. PubMed ID: 11095633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreceptors and visual pigments in a cichlid fish, Nannacara anomala.
    Ali MA; Hárosi FI; Wagner HJ
    Sens Processes; 1978 Jun; 2(2):130-45. PubMed ID: 715468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual pigment coexpression in Guinea pig cones: a microspectrophotometric study.
    Parry JW; Bowmaker JK
    Invest Ophthalmol Vis Sci; 2002 May; 43(5):1662-5. PubMed ID: 11980888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual pigments, cone oil droplets, ocular media and predicted spectral sensitivity in the domestic turkey (Meleagris gallopavo).
    Hart NS; Partridge JC; Cuthill IC
    Vision Res; 1999 Oct; 39(20):3321-8. PubMed ID: 10615498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation.
    Chinen A; Matsumoto Y; Kawamura S
    Mol Biol Evol; 2005 Apr; 22(4):1001-10. PubMed ID: 15647516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemistry of the primary event in short-wavelength visual opsins at low temperature.
    Vought BW; Dukkipatti A; Max M; Knox BE; Birge RR
    Biochemistry; 1999 Aug; 38(35):11287-97. PubMed ID: 10471278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ.
    Imai H; Kuwayama S; Onishi A; Morizumi T; Chisaka O; Shichida Y
    Photochem Photobiol Sci; 2005 Sep; 4(9):667-74. PubMed ID: 16121275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the relation between the photoactivation energy and the absorbance spectrum of visual pigments.
    Ala-Laurila P; Pahlberg J; Koskelainen A; Donner K
    Vision Res; 2004; 44(18):2153-8. PubMed ID: 15183682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of temperature on the dark-adapted spectral sensitivity function of the adult zebrafish.
    Saszik S; Bilotta J
    Vision Res; 1999 Mar; 39(6):1051-8. PubMed ID: 10343824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microspectrophotometry of visual pigments and oil droplets in a marine bird, the wedge-tailed shearwater Puffinus pacificus: topographic variations in photoreceptor spectral characteristics.
    Hart NS
    J Exp Biol; 2004 Mar; 207(Pt 7):1229-40. PubMed ID: 14978063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Spectral sensitivity and visual pigments of the coastal crab Hemigrapsus sanguineus].
    Shukoliukov SA; Zak PP; Kalamkarov GR; Kalishevich OO; Ostrovskiĭ MA
    Biofizika; 1980; 25(3):510-4. PubMed ID: 7397264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The thermal contribution to photoactivation in A2 visual pigments studied by temperature effects on spectral properties.
    Ala-Laurila P; Albert RJ; Saarinen P; Koskelainen A; Donner K
    Vis Neurosci; 2003; 20(4):411-9. PubMed ID: 14658769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low amplification and fast visual pigment phosphorylation as mechanisms characterizing cone photoresponses.
    Tachibanaki S; Tsushima S; Kawamura S
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):14044-9. PubMed ID: 11707584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual pigments and the photic environment: the cottoid fish of Lake Baikal.
    Bowmaker JK; Govardovskii VI; Shukolyukov SA; Zueva LV; Hunt DM; Sideleva VG; Smirnova OG
    Vision Res; 1994 Mar; 34(5):591-605. PubMed ID: 8160379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature effects on spectral properties of red and green rods in toad retina.
    Ala-Laurila P; Saarinen P; Albert R; Koskelainen A; Donner K
    Vis Neurosci; 2002; 19(6):781-92. PubMed ID: 12688672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral characteristics of visual pigments in rainbow trout (Oncorhynchus mykiss).
    Hawryshyn CW; Hárosi FI
    Vision Res; 1994 Jun; 34(11):1385-92. PubMed ID: 8023447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental changes in the cone visual pigments of black bream Acanthopagrus butcheri.
    Shand J; Hart NS; Thomas N; Partridge JC
    J Exp Biol; 2002 Dec; 205(Pt 23):3661-7. PubMed ID: 12409492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments.
    Cowing JA; Poopalasundaram S; Wilkie SE; Robinson PR; Bowmaker JK; Hunt DM
    Biochem J; 2002 Oct; 367(Pt 1):129-35. PubMed ID: 12099889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.