BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 15733858)

  • 1. Fractal nature of chromatin organization in interphase chicken erythrocyte nuclei: DNA structure exhibits biphasic fractal properties.
    Lebedev DV; Filatov MV; Kuklin AI; Islamov AKh; Kentzinger E; Pantina R; Toperverg BP; Isaev-Ivanov VV
    FEBS Lett; 2005 Feb; 579(6):1465-8. PubMed ID: 15733858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive scaling law for structural organization of chromatin in chicken erythrocyte nuclei.
    Iashina EG; Velichko EV; Filatov MV; Bouwman WG; Duif CP; Brulet A; Grigoriev SV
    Phys Rev E; 2017 Jul; 96(1-1):012411. PubMed ID: 29347273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switch of fractal properties of DNA in chicken erythrocytes nuclei by mechanical stress.
    Grigoriev SV; Iashina EG; Bairamukov VY; Pipich V; Radulescu A; Filatov MV; Pantina RA; Varfolomeeva EY
    Phys Rev E; 2020 Sep; 102(3-1):032415. PubMed ID: 33075965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Current insights into chromatin structure organization].
    IlatovskiÄ­ AV; Lebedev DV; Filatov MV; Petukhov MG; Isaev-Ivanov VV
    Tsitologiia; 2012; 54(4):298-306. PubMed ID: 22724366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the double helix.
    Felsenfeld G; Groudine M
    Nature; 2003 Jan; 421(6921):448-53. PubMed ID: 12540921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of chromatin folding patterns in chicken erythrocytes by atomic force microscopy (AFM).
    Qian RL; Liu ZX; Zhou MY; Xie HY; Jiang C; Yan ZJ; Li MQ; Zhang Y; Hu J
    Cell Res; 1997 Dec; 7(2):143-50. PubMed ID: 9444393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linker DNA destabilizes condensed chromatin.
    Green GR; Ferlita RR; Walkenhorst WF; Poccia DL
    Biochem Cell Biol; 2001; 79(3):349-63. PubMed ID: 11467748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA: Beyond the double helix.
    Pearson H
    Nature; 2003 Jan; 421(6921):310-2. PubMed ID: 12540871
    [No Abstract]   [Full Text] [Related]  

  • 9. Bifractal structure of chromatin in rat lymphocyte nuclei.
    Iashina EG; Varfolomeeva EY; Pantina RA; Bairamukov VY; Kovalev RA; Fedorova ND; Pipich V; Radulescu A; Grigoriev SV
    Phys Rev E; 2021 Dec; 104(6-1):064409. PubMed ID: 35030913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Characteristics of chromatin structural organization in somatic nucleus of the ciliate Didinium nasutum].
    Karadzhian BP; Leonova OG; Popenko VI
    Tsitologiia; 2010; 52(2):155-60. PubMed ID: 20352698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractal properties of lysozyme: a neutron scattering study.
    Lushnikov SG; Svanidze AV; Gvasaliya SN; Torok G; Rosta L; Sashin IL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031913. PubMed ID: 19391977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNase I footprinting of the nucleosome in whole nuclei.
    Staynov DZ
    Biochem Biophys Res Commun; 2008 Jul; 372(1):226-9. PubMed ID: 18485894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling and fractal behaviour underlying meiotic recombination.
    Waxman D; Stoletzki N
    Biosystems; 2010 Jan; 99(1):42-9. PubMed ID: 19712721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of nucleic acid and protein correlation in chromatin of HeLa nuclei using small-angle neutron scattering with D_{2}O-H_{2}O contrast variation.
    Grigoriev SV; Iashina EG; Wu B; Pipich V; Lang C; Radulescu A; Bairamukov VY; Filatov MV; Pantina RA; Varfolomeeva EY
    Phys Rev E; 2021 Oct; 104(4-1):044404. PubMed ID: 34781557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative chromosome conformation capture.
    Nativio R; Ito Y; Murrell A
    Methods Mol Biol; 2012; 925():173-85. PubMed ID: 22907497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative structural biology of the genome: nano-scale imaging of single nucleus from different kingdoms reveals the common physicochemical property of chromatin with a 40 nm structural unit.
    Kobori T; Kodama M; Hizume K; Yoshimura SH; Ohtani T; Takeyasu K
    J Electron Microsc (Tokyo); 2006 Jan; 55(1):31-40. PubMed ID: 16495343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin organization in the mammalian nucleus.
    Gilbert N; Gilchrist S; Bickmore WA
    Int Rev Cytol; 2005; 242():283-336. PubMed ID: 15598472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Structural-functional organization of DNA in the interphase nucleus. Structural aspects].
    Glazkov MV
    Mol Biol (Mosk); 1988; 22(1):16-30. PubMed ID: 3287133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin organization - the 30 nm fiber.
    Grigoryev SA; Woodcock CL
    Exp Cell Res; 2012 Jul; 318(12):1448-55. PubMed ID: 22394510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 30 nm chromatin fiber as a flexible polymer.
    Ostashevsky JY; Lange CS
    J Biomol Struct Dyn; 1994 Feb; 11(4):813-20. PubMed ID: 8204216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.