These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15734250)

  • 1. Molecular chain stretch is a multiaxial failure criterion for conventional and highly crosslinked UHMWPE.
    Bergström JS; Rimnac CM; Kurtz SM
    J Orthop Res; 2005 Mar; 23(2):367-75. PubMed ID: 15734250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiaxial fatigue behavior of conventional and highly crosslinked UHMWPE during cyclic small punch testing.
    Villarraga ML; Kurtz SM; Herr MP; Edidin AA
    J Biomed Mater Res A; 2003 Aug; 66(2):298-309. PubMed ID: 12889000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of multiaxial mechanical behavior for conventional and highly crosslinked UHMWPE using a hybrid constitutive model.
    Bergström JS; Rimnac CM; Kurtz SM
    Biomaterials; 2003 Apr; 24(8):1365-80. PubMed ID: 12527278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wear of contemporary total knee replacements--a knee simulator study of six current designs.
    Utzschneider S; Harrasser N; Schroeder C; Mazoochian F; Jansson V
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):583-8. PubMed ID: 19450910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the properties of annealed crosslinked (Crossfire) and conventional polyethylene as hip bearing materials.
    Kurtz SM; Manley M; Wang A; Taylor S; Dumbleton J
    Bull Hosp Jt Dis; 2002-2003; 61(1-2):17-26. PubMed ID: 12828375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An augmented hybrid constitutive model for simulation of unloading and cyclic loading behavior of conventional and highly crosslinked UHMWPE.
    Bergström JS; Rimnac CM; Kurtz SM
    Biomaterials; 2004 May; 25(11):2171-8. PubMed ID: 14741632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compliance calibration for fatigue crack propagation testing of ultra high molecular weight polyethylene.
    Varadarajan R; Rimnac CM
    Biomaterials; 2006 Sep; 27(27):4693-7. PubMed ID: 16750266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A holistic numerical model to predict strain hardening and damage of UHMWPE under multiple total knee replacement kinematics and experimental validation.
    Willing R; Kim IY
    J Biomech; 2009 Nov; 42(15):2520-7. PubMed ID: 19647828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gamma-irradiation aggravates stress concentration along subsurface grain boundary of ultra-high molecular weight polyethylene (UHMWPE) under sliding fatigue environment.
    Shibata N; Tomita N; Ikeuchi K
    Biomed Mater Eng; 2003; 13(1):35-45. PubMed ID: 12652021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE.
    Gomoll A; Wanich T; Bellare A
    J Orthop Res; 2002 Nov; 20(6):1152-6. PubMed ID: 12472222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly crosslinked UHMWPE for CR and PS total knee arthroplasties.
    Wang A; Yau SS; Essner A; Herrera L; Manley M; Dumbleton J
    J Arthroplasty; 2008 Jun; 23(4):559-66. PubMed ID: 18514875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene.
    Gencur SJ; Rimnac CM; Kurtz SM
    Biomaterials; 2006 Mar; 27(8):1550-7. PubMed ID: 16303175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene.
    Baker DA; Bellare A; Pruitt L
    J Biomed Mater Res A; 2003 Jul; 66(1):146-54. PubMed ID: 12833441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The basis for a second-generation highly cross-linked UHMWPE.
    Dumbleton JH; D'Antonio JA; Manley MT; Capello WN; Wang A
    Clin Orthop Relat Res; 2006 Dec; 453():265-71. PubMed ID: 17016228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of lipid absorption on wear and compressive properties of unirradiated and highly crosslinked UHMWPE: an in vitro experimental model.
    Greenbaum ES; Burroughs BB; Harris WH; Muratoglu OK
    Biomaterials; 2004 Aug; 25(18):4479-84. PubMed ID: 15046938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropy and oxidative resistance of highly crosslinked UHMWPE after deformation processing by solid-state ram extrusion.
    Kurtz SM; Mazzucco D; Rimnac CM; Schroeder D
    Biomaterials; 2006 Jan; 27(1):24-34. PubMed ID: 16085308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic destruction of ultra-high molecular weight polyethylene (UHMWPE) under uniaxial tension.
    Shibata N; Tomita N; Ikeuchi K
    Biomed Mater Eng; 2003; 13(1):47-57. PubMed ID: 12652022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical modeling of acetabular component polyethylene stresses, fracture risk, and wear rate following press-fit implantation.
    Ong KL; Rundell S; Liepins I; Laurent R; Markel D; Kurtz SM
    J Orthop Res; 2009 Nov; 27(11):1467-72. PubMed ID: 19489047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene.
    Pruitt LA
    Biomaterials; 2005 Mar; 26(8):905-15. PubMed ID: 15353202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.