These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15734592)

  • 1. Decomposition of leaves of the metallophyte Arabidopsis halleri in soil microcosms: fate of Zn and Cd from plant residues.
    Boucher U; Lamy I; Cambier P; Balabane M
    Environ Pollut; 2005 May; 135(2):323-32. PubMed ID: 15734592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decomposition in soil microcosms of leaves of the metallophyte Arabidopsis halleri: effect of leaf-associated heavy metals on biodegradation.
    Boucher U; Balabane M; Lamy I; Cambier P
    Environ Pollut; 2005 May; 135(2):187-94. PubMed ID: 15734579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomposition of heavy metal contaminated nettles (Urtica dioica L.) in soils subjected to heavy metal pollution by river sediments.
    Khan KS; Joergensen RG
    Chemosphere; 2006 Nov; 65(6):981-7. PubMed ID: 16677685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc and copper uptake by plants under two transpiration rates. Part II. Buckwheat (Fagopyrum esculentum L.).
    Tani FH; Barrington S
    Environ Pollut; 2005 Dec; 138(3):548-58. PubMed ID: 16043272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of different microbial biomass and activity measurement methods in metal-contaminated soils.
    Barajas-Aceves M
    Bioresour Technol; 2005 Aug; 96(12):1405-14. PubMed ID: 15792589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils.
    Dumat C; Quenea K; Bermond A; Toinen S; Benedetti MF
    Environ Pollut; 2006 Aug; 142(3):521-9. PubMed ID: 16338041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.
    Wang Y; Shi J; Wang H; Lin Q; Chen X; Chen Y
    Ecotoxicol Environ Saf; 2007 May; 67(1):75-81. PubMed ID: 16828162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass.
    Almås AR; Lombnaes P; Sogn TA; Mulder J
    Chemosphere; 2006 Mar; 62(10):1647-55. PubMed ID: 16084561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study.
    Li H; Wang Q; Cui Y; Dong Y; Christie P
    Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid/solution partitioning and speciation of heavy metals in the contaminated agricultural soils around a copper mine in eastern Nanjing city, China.
    Luo XS; Zhou DM; Liu XH; Wang YJ
    J Hazard Mater; 2006 Apr; 131(1-3):19-27. PubMed ID: 16260085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of organic acids on the transport of heavy metals in soil.
    Schwab AP; Zhu DS; Banks MK
    Chemosphere; 2008 Jun; 72(6):986-94. PubMed ID: 18482743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.
    Chiu KK; Ye ZH; Wong MH
    Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.
    Koopmans GF; Römkens PF; Fokkema MJ; Song J; Luo YM; Japenga J; Zhao FJ
    Environ Pollut; 2008 Dec; 156(3):905-14. PubMed ID: 18644664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators.
    Liang HM; Lin TH; Chiou JM; Yeh KC
    Environ Pollut; 2009 Jun; 157(6):1945-52. PubMed ID: 19268408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speciation of zinc in contaminated soils.
    Stephan CH; Courchesne F; Hendershot WH; McGrath SP; Chaudri AM; Sappin-Didier V; Sauvé S
    Environ Pollut; 2008 Sep; 155(2):208-16. PubMed ID: 18222022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation.
    Torri S; Lavado R
    J Hazard Mater; 2009 Jul; 166(2-3):1459-65. PubMed ID: 19200650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M; Khanlari ZV
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal accumulation in trees growing on contaminated sites in Central Europe.
    Unterbrunner R; Puschenreiter M; Sommer P; Wieshammer G; Tlustos P; Zupan M; Wenzel WW
    Environ Pollut; 2007 Jul; 148(1):107-14. PubMed ID: 17224228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.