BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15734653)

  • 1. RNAi-based discovery and validation of new drug targets in filarial nematodes.
    Behm CA; Bendig MM; McCarter JP; Sluder AE
    Trends Parasitol; 2005 Mar; 21(3):97-100. PubMed ID: 15734653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical composition and metabolic pathways of filarial worms Setaria cervi: search for new antifilarial agents.
    Ahmad R; Srivastava AK
    J Helminthol; 2007 Sep; 81(3):261-80. PubMed ID: 17875226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards novel antifilarial drugs: challenges and recent developments.
    Singh PK; Ajay A; Kushwaha S; Tripathi RP; Misra-Bhattacharya S
    Future Med Chem; 2010 Feb; 2(2):251-83. PubMed ID: 21426193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnostic tools for filariasis elimination programs.
    Weil GJ; Ramzy RM
    Trends Parasitol; 2007 Feb; 23(2):78-82. PubMed ID: 17174604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filariasis: Current status, treatment and recent advances in drug development.
    Katiyar D; Singh LK
    Curr Med Chem; 2011; 18(14):2174-85. PubMed ID: 21521163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and antifilarial activity of chalcone-thiazole derivatives against a human lymphatic filarial parasite, Brugia malayi.
    Sashidhara KV; Rao KB; Kushwaha V; Modukuri RK; Verma R; Murthy PK
    Eur J Med Chem; 2014 Jun; 81():473-80. PubMed ID: 24863844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mining predicted essential genes of Brugia malayi for nematode drug targets.
    Kumar S; Chaudhary K; Foster JM; Novelli JF; Zhang Y; Wang S; Spiro D; Ghedin E; Carlow CK
    PLoS One; 2007 Nov; 2(11):e1189. PubMed ID: 18000556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient in vitro RNA interference and immunofluorescence-based phenotype analysis in a human parasitic nematode, Brugia malayi.
    Landmann F; Foster JM; Slatko BE; Sullivan W
    Parasit Vectors; 2012 Jan; 5():16. PubMed ID: 22243803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emodepside has sex-dependent immobilizing effects on adult Brugia malayi due to a differentially spliced binding pocket in the RCK1 region of the SLO-1 K channel.
    Kashyap SS; Verma S; Voronin D; Lustigman S; Kulke D; Robertson AP; Martin RJ
    PLoS Pathog; 2019 Sep; 15(9):e1008041. PubMed ID: 31553770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunomodulator tuftsin augments antifilarial activity of diethylcarbamazine against experimental brugian filariasis.
    Owais M; Misra-Bhattacharya S; Haq W; Gupta CM
    J Drug Target; 2003 May; 11(4):247-51. PubMed ID: 14578113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two hypotheses to explain why RNA interference does not work in animal parasitic nematodes.
    Viney ME; Thompson FJ
    Int J Parasitol; 2008 Jan; 38(1):43-7. PubMed ID: 18028931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-filarial activity of novel formulations of albendazole against experimental brugian filariasis.
    Gaur RL; Dixit S; Sahoo MK; Khanna M; Singh S; Murthy PK
    Parasitology; 2007 Apr; 134(Pt 4):537-44. PubMed ID: 17078904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug targets for lymphatic filariasis: a bioinformatics approach.
    Sharma OP; Vadlamudi Y; Kota AG; Sinha VK; Kumar MS
    J Vector Borne Dis; 2013 Sep; 50(3):155-62. PubMed ID: 24220073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibiotics for the treatment of onchocerciasis and other filarial infections.
    Hoerauf A; Adjei O; Büttner DW
    Curr Opin Investig Drugs; 2002 Apr; 3(4):533-7. PubMed ID: 12090719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gender-associated genes in filarial nematodes are important for reproduction and potential intervention targets.
    Li BW; Rush AC; Jiang DJ; Mitreva M; Abubucker S; Weil GJ
    PLoS Negl Trop Dis; 2011 Jan; 5(1):e947. PubMed ID: 21283610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomes of parasitic nematodes (Meloidogyne hapla, Meloidogyne incognita, Ascaris suum and Brugia malayi) have a reduced complement of small RNA interference pathway genes: knockdown can reduce host infectivity of M. incognita.
    Iqbal S; Fosu-Nyarko J; Jones MG
    Funct Integr Genomics; 2016 Jul; 16(4):441-57. PubMed ID: 27126863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trehalose metabolism genes in Caenorhabditis elegans and filarial nematodes.
    Pellerone FI; Archer SK; Behm CA; Grant WN; Lacey MJ; Somerville AC
    Int J Parasitol; 2003 Sep; 33(11):1195-206. PubMed ID: 13678635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attempts to establish RNA interference in the parasitic nematode Heligmosomoides polygyrus.
    Lendner M; Doligalska M; Lucius R; Hartmann S
    Mol Biochem Parasitol; 2008 Sep; 161(1):21-31. PubMed ID: 18606194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling of gender-regulated gene transcripts in the filarial nematode Brugia malayi by cDNA oligonucleotide array analysis.
    Li BW; Rush AC; Crosby SD; Warren WC; Williams SA; Mitreva M; Weil GJ
    Mol Biochem Parasitol; 2005 Sep; 143(1):49-57. PubMed ID: 15992941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and activity of substituted anthraquinones against a human filarial parasite, Brugia malayi.
    Dhananjeyan MR; Milev YP; Kron MA; Nair MG
    J Med Chem; 2005 Apr; 48(8):2822-30. PubMed ID: 15828820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.